Previous |  Up |  Next

Article

Title: Bifurcation of periodic solutions to nonlinear measure differential equations (English)
Author: Mesquita, Maria Carolina
Author: Tvrdý, Milan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 357-395
Summary lang: English
.
Category: math
.
Summary: The paper is devoted to the periodic bifurcation problems for generalizations of ordinary differential systems. The bifurcation is understood in the static sense of Krasnoselski\u ı and Zabre\u ıko. First, the conditions necessary for the given point to be bifurcation point for non autonomous generalized ordinary differential equations (based on the Kurzweil gauge type generalized integral) are proved. Then, as the main contribution, analogous results are obtained also for the nonlinear non autonomous measure differential equations considered in the sense of distributions. To this aim their relationship to Kurzweil's generalized differential equations is disclosed. Although the measure differential equations turned out to be special cases of those Kurzweil's equations, the proofs of the main results of the paper are by no means the straightforward consequences of the analogous results for generalized differential equations. Essentially they rely on the theory of the Kurzweil-Stieltjes integration. It is worth noting that as the systems studied in the paper encompass many types of equations such as impulsive differential equations, ordinary differential equations, dynamic equations on time scales etc., the results of the paper offer applications to rather wide scale of practical problems. Two illustrating examples are included, as well. (English)
Keyword: periodic solution
Keyword: bifurcation
Keyword: Kurzweil integral
Keyword: Kurzweil-Stieltjes integral
Keyword: generalized differential equation
Keyword: measure differential equation
Keyword: distributional differential equation
MSC: 26A39
MSC: 34C23
MSC: 34C25
MSC: 47H11
DOI: 10.21136/CMJ.2024.0120-24
.
Date available: 2025-03-11T16:06:22Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152913
.
Reference: [1] Amann, H.: Ordinary Differential Equations. An Introduction to Nonlinear Analysis.De Gruyter Studies in Mathematics 13. Walter de Gruyter, Berlin (1990). Zbl 0708.34002, MR 0708.34002, 10.1515/9783110853698
Reference: [2] Anagnostopoulou, V., Pötzsche, C., Rasmussen, M.: Nonautonomous Bifurcation Theory. Concepts and Tools.Frontiers in Applied Dynamical Systems: Reviews and Tutorials 10. Springer, Cham (2023). Zbl 1530.37003, MR 4633309, 10.1007/978-3-031-29842-4
Reference: [3] Bainov, D., Simeonov, P.: Impulsive Differential Equations. Periodic Solutions and Applications.Pitman Monographs and Surveys in Pure and Applied Mathematics 66. Longman Scientific & Technical, Harlow (1993). Zbl 0815.34001, MR 1266625, 10.1201/9780203751206
Reference: [4] Bonotto, E. M., Federson, M., Mesquita, J. G., (Eds.): Generalized Ordinary Differential Equations in Abstract Spaces and Applications.John Wiley & Sons, Hoboken (2021). Zbl 1475.34001, MR 4485099, 10.1002/9781119655022
Reference: [5] Brogliato, B.: Nonsmooth Mechanics. Models, Dynamics and Control.Communications and Control Engineering Series. Springer, London (1999). Zbl 0917.73002, MR 3467591, 10.1007/978-3-319-28664-8
Reference: [6] Cao, Y., Sun, J.: On existence of nonlinear measure driven equations involving non-absolutely convergent integrals.Nonlinear Anal., Hybrid Syst. 20 (2016), 72-81. Zbl 1341.34061, MR 3457662, 10.1016/j.nahs.2015.11.003
Reference: [7] Cao, Y., Sun, J.: Practical stability of nonlinear measure differential equations.Nonlinear Anal., Hybrid Syst. 30 (2018), 163-170. Zbl 1506.34006, MR 3841601, 10.1016/j.nahs.2018.05.010
Reference: [8] Cid, J. A., Infante, G., Tvrdý, M., Zima, M.: New results for the Liebau phenomenon via fixed point index.Nonlinear Anal., Real World Appl. 35 (2017), 457-469. Zbl 1370.34043, MR 3595336, 10.1016/j.nonrwa.2016.11.009
Reference: [9] Cid, J.Á., Sanchez, L.: Nonnegative oscillations for a class of differential equations without uniqueness: A variational approach.Discrete Contin. Dyn. Syst., Ser. B 25 (2020), 545-554. Zbl 1433.34060, MR 4043578, 10.3934/dcdsb.2019253
Reference: [10] Cousin, P.: Sur les fonctions de $n$ variables complexes.Acta Math. 19 (1895), 1-62 French \99999JFM99999 26.0456.02. MR 1554861, 10.1007/BF02402869
Reference: [11] Drábek, P., Milota, J.: Methods of Nonlinear Analysis. Applications to Differential Equations.Birkhäuser Advanced Texts. Basler Lehrbücher. Birkhäuser, Basel (2007). Zbl 1176.35002, MR 2323436, 10.1007/978-3-0348-0387-8
Reference: [12] Federson, M., Mawhin, J., Mesquita, C.: Existence of periodic solutions and bifurcation points for generalized ordinary differential equations.Bull. Sci. Math. 169 (2021), Article ID 102991, 31 pages. Zbl 1471.34011, MR 4253257, 10.1016/j.bulsci.2021.102991
Reference: [13] Fraňková, D.: Regulated functions.Math. Bohem. 116 (1991), 20-59. Zbl 0724.26009, MR 1100424, 10.21136/MB.1991.126195
Reference: [14] Friedlander, F. G., Joshi, M.: Introduction to the Theory of Distributions.Cambridge University Press, Cambridge (1998). Zbl 0971.46024, MR 1721032
Reference: [15] Hakl, R., Torres, P. J.: Maximum and antimaximum principles for a second order differential operator with variable coefficients of indefinite sign.Appl. Math. Comput. 217 (2011), 7599-7611. Zbl 1235.34064, MR 2799774, 10.1016/j.amc.2011.02.053
Reference: [16] Halperin, I.: Introduction to the Theory of Distributions.University of Toronto Press, Toronto (1952). Zbl 0046.12603, MR 0045933, 10.3138/9781442615151
Reference: [17] Hildebrandt, T. H.: Introduction to the Theory of Integration.Pure and Applied Mathematics 13. Academic Press, New York (1963). Zbl 0112.28302, MR 0154957
Reference: [18] Hönig, C. S.: Volterra-Stieltjes Integral Equations. Functional Analytic Methods, Linear Constraints.North-Holland Mathematics Studies 16. North Holland, Amsterdam (1975). Zbl 0307.45002, MR 0499969
Reference: [19] Kanwal, R. P.: Generalized Functions. Theory and Aplications.Birkhäuser, Boston (2004). Zbl 1069.46001, MR 2075881, 10.1007/978-0-8176-8174-6
Reference: [20] Kelley, W. G., Peterson, A. C.: The Theory of Differential Equations. Classical and Qualitative.Universitext. Springer, New York (2010). Zbl 1201.34001, MR 2640364, 10.1007/978-1-4419-5783-2
Reference: [21] Krasnosel'skiĭ, M. A., ko, P. P. Zabreĭ: Geometrical Methods of Nonlinear Analysis.Grundlehren der Mathematischen Wissenschaften 263. Springer, Berlin (1984). Zbl 0546.47030, MR 0736839, 10.1007/978-3-642-69409-7
Reference: [22] Krawcewicz, W., Wu, J.: Theory of Degrees with Applications to Bifurcations and Differential Equations.Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York (1997). Zbl 0882.58001, MR 1426128
Reference: [23] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-449. Zbl 0090.30002, MR 0111875, 10.21136/CMJ.1957.100258
Reference: [24] Kurzweil, J.: Generalized ordinary differential equations.Czech. Math. J. 8 (1958), 360-388. Zbl 0094.05804, MR 0111878, 10.21136/CMJ.1958.100311
Reference: [25] Kurzweil, J.: Generalized Ordinary Differential Equations. Not Absolutely Continuous Solutions.Series in Real Analysis 11. World Scientific, Hackensack (2012). Zbl 1248.34001, MR 2906899, 10.1142/7907
Reference: [26] Ligęza, J.: Product of measures and regulated functions.Generalized Functions and Convergence World Scientific, Singapore (1990), 175-179. MR 1085505
Reference: [27] Lomtatidze, A.: Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations.Mem. Differ. Equ. Math. Phys. 67 (2016), 1-129. Zbl 1352.34033, MR 3472904
Reference: [28] Albés, I. Márquez, Slavík, A., Tvrdý, M.: Duality for Stieltjes differential and integral equations.J. Math. Anal. Appl. 519 (2023), Article ID 126789, 52 pages. Zbl 1507.34004, MR 4499373, 10.1016/j.jmaa.2022.126789
Reference: [29] McShane, E. J.: Integration.Princeton University Press, Princeton (1947). Zbl 0033.05302, MR 0082536
Reference: [30] Macena, M. C. S. Mesquita: Applications of Topological Degree Theory to Generalized ODEs: Ph. D. Thesis.Universidade Federal de Sao Carlos, Sao Carlos (2019), Available at https://repositorio.ufscar.br/handle/ufscar/12204\kern0pt.
Reference: [31] Miller, B. M., Rubinovich, E. Y.: Impulsive Control in Continuous and Discrete-Continuous Systems.Kluwer Academic, New York (2003). Zbl 1065.49022, MR 2024011, 10.1007/978-1-4615-0095-7
Reference: [32] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral. Theory and Applications.Series in Real Analysis 15. World Scientific, Hackensack (2019). Zbl 1437.28001, MR 3839599, 10.1142/9432
Reference: [33] Monteiro, G. A., Tvrdý, M.: On Kurzweil-Stieltjes integral in Banach space.Math. Bohem. 137 (2012), 365-381. Zbl 1274.26014, MR 3058269, 10.21136/MB.2012.142992
Reference: [34] Pandit, S. G., Deo, S. G.: Differential Equations Involving Impulses.Lecture Notes in Mathematics 954. Springer, Berlin (1982). Zbl 0539.34001, MR 0674119, 10.1007/BFb0067476
Reference: [35] Propst, G.: Pumping effects in models of periodically forced flow configurations.Physica D 217 (2006), 193-201. Zbl 1136.76338, MR 2230516, 10.1016/j.physd.2006.04.007
Reference: [36] Rachůnková, I., Tomeček, J.: Distributional van der Pol equation with state-dependent impulses.Lith. Math. J. 58 (2018), 185-197. Zbl 1401.34024, MR 3814714, 10.1007/s10986-018-9394-3
Reference: [37] Rasmussen, M.: Attractivity and Bifurcation for Nonautonomous Dynamical Systems.Lecture Notes in Mathematics 1907. Springer, Berlin (2007). Zbl 1131.37001, MR 2327977, 10.1007/978-3-540-71225-1
Reference: [38] Rudin, W.: Functional Analysis.International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991). Zbl 0867.46001, MR 1157815
Reference: [39] Samoilenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations.World Scientific Series on Nonlinear Science. Series A 14. World Scientific, Singapore (1995). Zbl 0837.34003, MR 1355787, 10.1142/2892
Reference: [40] Satco, B.: Regulated solutions for nonlinear measure driven equations.Nonlinear Anal., Hybrid Syst. 13 (2014), 22-31. Zbl 1295.45003, MR 3209695, 10.1016/j.nahs.2014.02.001
Reference: [41] Schechter, M.: Principles of Functional Analysis.Graduate Studies in Mathematics 36. AMS, Providence (2002). Zbl 1002.46002, MR 1861991, 10.1090/gsm/036
Reference: [42] Schwabik, Š.: Generalized differential equations. Fundamental results.Rozpr. Česk. Akad. Věd, Řada Mat. Přír. Věd 95 (1985), 103 pages. Zbl 0594.34002, MR 0823224
Reference: [43] Schwabik, Š.: Generalized Ordinary Differential Equations.Series in Real Analysis 5. World Scientific, Singapore (1992). Zbl 0781.34003, MR 1200241, 10.1142/1875
Reference: [44] Slavík, A.: Generalized differential equations: Differentiability of solutions with respect to initial conditions and parameters.J. Math. Anal. Appl. 402 (2013), 261-274. Zbl 1279.34013, MR 3023256, 10.1016/j.jmaa.2013.01.027
Reference: [45] Torres, P. J.: Mathematical Models with Singularities. A Zoo of Singular Creatures.Atlantis Briefs in Differential Equations 1. Atlantis Press, Amsterdam (2015). Zbl 1305.00097, MR 3328358, 10.2991/978-94-6239-106-2
Reference: [46] Tvrdý, M.: Linear distributional differential equations of the second order.Math. Bohem. 119 (1994), 415-436. Zbl 0819.34007, MR 1316594, 10.21136/MB.1994.126120
Reference: [47] Tvrdý, M.: Differential and integral equations in the space of regulated functions.Mem. Differ. Equ. Math. Phys. 25 (2002), 1-104. Zbl 1081.34504, MR 1903190
Reference: [48] Yeh, J.: Real Analysis. Theory of Measure and Integration.World Scientific, Hackensack (2014). Zbl 1301.26002, MR 3308472, 10.1142/9037
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo