Title: | Bifurcation of periodic solutions to nonlinear measure differential equations (English) |
Author: | Mesquita, Maria Carolina |
Author: | Tvrdý, Milan |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 75 |
Issue: | 1 |
Year: | 2025 |
Pages: | 357-395 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | The paper is devoted to the periodic bifurcation problems for generalizations of ordinary differential systems. The bifurcation is understood in the static sense of Krasnoselski\u ı and Zabre\u ıko. First, the conditions necessary for the given point to be bifurcation point for non autonomous generalized ordinary differential equations (based on the Kurzweil gauge type generalized integral) are proved. Then, as the main contribution, analogous results are obtained also for the nonlinear non autonomous measure differential equations considered in the sense of distributions. To this aim their relationship to Kurzweil's generalized differential equations is disclosed. Although the measure differential equations turned out to be special cases of those Kurzweil's equations, the proofs of the main results of the paper are by no means the straightforward consequences of the analogous results for generalized differential equations. Essentially they rely on the theory of the Kurzweil-Stieltjes integration. It is worth noting that as the systems studied in the paper encompass many types of equations such as impulsive differential equations, ordinary differential equations, dynamic equations on time scales etc., the results of the paper offer applications to rather wide scale of practical problems. Two illustrating examples are included, as well. (English) |
Keyword: | periodic solution |
Keyword: | bifurcation |
Keyword: | Kurzweil integral |
Keyword: | Kurzweil-Stieltjes integral |
Keyword: | generalized differential equation |
Keyword: | measure differential equation |
Keyword: | distributional differential equation |
MSC: | 26A39 |
MSC: | 34C23 |
MSC: | 34C25 |
MSC: | 47H11 |
DOI: | 10.21136/CMJ.2024.0120-24 |
. | |
Date available: | 2025-03-11T16:06:22Z |
Last updated: | 2025-03-19 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152913 |
. | |
Reference: | [1] Amann, H.: Ordinary Differential Equations. An Introduction to Nonlinear Analysis.De Gruyter Studies in Mathematics 13. Walter de Gruyter, Berlin (1990). Zbl 0708.34002, MR 0708.34002, 10.1515/9783110853698 |
Reference: | [2] Anagnostopoulou, V., Pötzsche, C., Rasmussen, M.: Nonautonomous Bifurcation Theory. Concepts and Tools.Frontiers in Applied Dynamical Systems: Reviews and Tutorials 10. Springer, Cham (2023). Zbl 1530.37003, MR 4633309, 10.1007/978-3-031-29842-4 |
Reference: | [3] Bainov, D., Simeonov, P.: Impulsive Differential Equations. Periodic Solutions and Applications.Pitman Monographs and Surveys in Pure and Applied Mathematics 66. Longman Scientific & Technical, Harlow (1993). Zbl 0815.34001, MR 1266625, 10.1201/9780203751206 |
Reference: | [4] Bonotto, E. M., Federson, M., Mesquita, J. G., (Eds.): Generalized Ordinary Differential Equations in Abstract Spaces and Applications.John Wiley & Sons, Hoboken (2021). Zbl 1475.34001, MR 4485099, 10.1002/9781119655022 |
Reference: | [5] Brogliato, B.: Nonsmooth Mechanics. Models, Dynamics and Control.Communications and Control Engineering Series. Springer, London (1999). Zbl 0917.73002, MR 3467591, 10.1007/978-3-319-28664-8 |
Reference: | [6] Cao, Y., Sun, J.: On existence of nonlinear measure driven equations involving non-absolutely convergent integrals.Nonlinear Anal., Hybrid Syst. 20 (2016), 72-81. Zbl 1341.34061, MR 3457662, 10.1016/j.nahs.2015.11.003 |
Reference: | [7] Cao, Y., Sun, J.: Practical stability of nonlinear measure differential equations.Nonlinear Anal., Hybrid Syst. 30 (2018), 163-170. Zbl 1506.34006, MR 3841601, 10.1016/j.nahs.2018.05.010 |
Reference: | [8] Cid, J. A., Infante, G., Tvrdý, M., Zima, M.: New results for the Liebau phenomenon via fixed point index.Nonlinear Anal., Real World Appl. 35 (2017), 457-469. Zbl 1370.34043, MR 3595336, 10.1016/j.nonrwa.2016.11.009 |
Reference: | [9] Cid, J.Á., Sanchez, L.: Nonnegative oscillations for a class of differential equations without uniqueness: A variational approach.Discrete Contin. Dyn. Syst., Ser. B 25 (2020), 545-554. Zbl 1433.34060, MR 4043578, 10.3934/dcdsb.2019253 |
Reference: | [10] Cousin, P.: Sur les fonctions de $n$ variables complexes.Acta Math. 19 (1895), 1-62 French \99999JFM99999 26.0456.02. MR 1554861, 10.1007/BF02402869 |
Reference: | [11] Drábek, P., Milota, J.: Methods of Nonlinear Analysis. Applications to Differential Equations.Birkhäuser Advanced Texts. Basler Lehrbücher. Birkhäuser, Basel (2007). Zbl 1176.35002, MR 2323436, 10.1007/978-3-0348-0387-8 |
Reference: | [12] Federson, M., Mawhin, J., Mesquita, C.: Existence of periodic solutions and bifurcation points for generalized ordinary differential equations.Bull. Sci. Math. 169 (2021), Article ID 102991, 31 pages. Zbl 1471.34011, MR 4253257, 10.1016/j.bulsci.2021.102991 |
Reference: | [13] Fraňková, D.: Regulated functions.Math. Bohem. 116 (1991), 20-59. Zbl 0724.26009, MR 1100424, 10.21136/MB.1991.126195 |
Reference: | [14] Friedlander, F. G., Joshi, M.: Introduction to the Theory of Distributions.Cambridge University Press, Cambridge (1998). Zbl 0971.46024, MR 1721032 |
Reference: | [15] Hakl, R., Torres, P. J.: Maximum and antimaximum principles for a second order differential operator with variable coefficients of indefinite sign.Appl. Math. Comput. 217 (2011), 7599-7611. Zbl 1235.34064, MR 2799774, 10.1016/j.amc.2011.02.053 |
Reference: | [16] Halperin, I.: Introduction to the Theory of Distributions.University of Toronto Press, Toronto (1952). Zbl 0046.12603, MR 0045933, 10.3138/9781442615151 |
Reference: | [17] Hildebrandt, T. H.: Introduction to the Theory of Integration.Pure and Applied Mathematics 13. Academic Press, New York (1963). Zbl 0112.28302, MR 0154957 |
Reference: | [18] Hönig, C. S.: Volterra-Stieltjes Integral Equations. Functional Analytic Methods, Linear Constraints.North-Holland Mathematics Studies 16. North Holland, Amsterdam (1975). Zbl 0307.45002, MR 0499969 |
Reference: | [19] Kanwal, R. P.: Generalized Functions. Theory and Aplications.Birkhäuser, Boston (2004). Zbl 1069.46001, MR 2075881, 10.1007/978-0-8176-8174-6 |
Reference: | [20] Kelley, W. G., Peterson, A. C.: The Theory of Differential Equations. Classical and Qualitative.Universitext. Springer, New York (2010). Zbl 1201.34001, MR 2640364, 10.1007/978-1-4419-5783-2 |
Reference: | [21] Krasnosel'skiĭ, M. A., ko, P. P. Zabreĭ: Geometrical Methods of Nonlinear Analysis.Grundlehren der Mathematischen Wissenschaften 263. Springer, Berlin (1984). Zbl 0546.47030, MR 0736839, 10.1007/978-3-642-69409-7 |
Reference: | [22] Krawcewicz, W., Wu, J.: Theory of Degrees with Applications to Bifurcations and Differential Equations.Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York (1997). Zbl 0882.58001, MR 1426128 |
Reference: | [23] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-449. Zbl 0090.30002, MR 0111875, 10.21136/CMJ.1957.100258 |
Reference: | [24] Kurzweil, J.: Generalized ordinary differential equations.Czech. Math. J. 8 (1958), 360-388. Zbl 0094.05804, MR 0111878, 10.21136/CMJ.1958.100311 |
Reference: | [25] Kurzweil, J.: Generalized Ordinary Differential Equations. Not Absolutely Continuous Solutions.Series in Real Analysis 11. World Scientific, Hackensack (2012). Zbl 1248.34001, MR 2906899, 10.1142/7907 |
Reference: | [26] Ligęza, J.: Product of measures and regulated functions.Generalized Functions and Convergence World Scientific, Singapore (1990), 175-179. MR 1085505 |
Reference: | [27] Lomtatidze, A.: Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations.Mem. Differ. Equ. Math. Phys. 67 (2016), 1-129. Zbl 1352.34033, MR 3472904 |
Reference: | [28] Albés, I. Márquez, Slavík, A., Tvrdý, M.: Duality for Stieltjes differential and integral equations.J. Math. Anal. Appl. 519 (2023), Article ID 126789, 52 pages. Zbl 1507.34004, MR 4499373, 10.1016/j.jmaa.2022.126789 |
Reference: | [29] McShane, E. J.: Integration.Princeton University Press, Princeton (1947). Zbl 0033.05302, MR 0082536 |
Reference: | [30] Macena, M. C. S. Mesquita: Applications of Topological Degree Theory to Generalized ODEs: Ph. D. Thesis.Universidade Federal de Sao Carlos, Sao Carlos (2019), Available at https://repositorio.ufscar.br/handle/ufscar/12204\kern0pt. |
Reference: | [31] Miller, B. M., Rubinovich, E. Y.: Impulsive Control in Continuous and Discrete-Continuous Systems.Kluwer Academic, New York (2003). Zbl 1065.49022, MR 2024011, 10.1007/978-1-4615-0095-7 |
Reference: | [32] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral. Theory and Applications.Series in Real Analysis 15. World Scientific, Hackensack (2019). Zbl 1437.28001, MR 3839599, 10.1142/9432 |
Reference: | [33] Monteiro, G. A., Tvrdý, M.: On Kurzweil-Stieltjes integral in Banach space.Math. Bohem. 137 (2012), 365-381. Zbl 1274.26014, MR 3058269, 10.21136/MB.2012.142992 |
Reference: | [34] Pandit, S. G., Deo, S. G.: Differential Equations Involving Impulses.Lecture Notes in Mathematics 954. Springer, Berlin (1982). Zbl 0539.34001, MR 0674119, 10.1007/BFb0067476 |
Reference: | [35] Propst, G.: Pumping effects in models of periodically forced flow configurations.Physica D 217 (2006), 193-201. Zbl 1136.76338, MR 2230516, 10.1016/j.physd.2006.04.007 |
Reference: | [36] Rachůnková, I., Tomeček, J.: Distributional van der Pol equation with state-dependent impulses.Lith. Math. J. 58 (2018), 185-197. Zbl 1401.34024, MR 3814714, 10.1007/s10986-018-9394-3 |
Reference: | [37] Rasmussen, M.: Attractivity and Bifurcation for Nonautonomous Dynamical Systems.Lecture Notes in Mathematics 1907. Springer, Berlin (2007). Zbl 1131.37001, MR 2327977, 10.1007/978-3-540-71225-1 |
Reference: | [38] Rudin, W.: Functional Analysis.International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991). Zbl 0867.46001, MR 1157815 |
Reference: | [39] Samoilenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations.World Scientific Series on Nonlinear Science. Series A 14. World Scientific, Singapore (1995). Zbl 0837.34003, MR 1355787, 10.1142/2892 |
Reference: | [40] Satco, B.: Regulated solutions for nonlinear measure driven equations.Nonlinear Anal., Hybrid Syst. 13 (2014), 22-31. Zbl 1295.45003, MR 3209695, 10.1016/j.nahs.2014.02.001 |
Reference: | [41] Schechter, M.: Principles of Functional Analysis.Graduate Studies in Mathematics 36. AMS, Providence (2002). Zbl 1002.46002, MR 1861991, 10.1090/gsm/036 |
Reference: | [42] Schwabik, Š.: Generalized differential equations. Fundamental results.Rozpr. Česk. Akad. Věd, Řada Mat. Přír. Věd 95 (1985), 103 pages. Zbl 0594.34002, MR 0823224 |
Reference: | [43] Schwabik, Š.: Generalized Ordinary Differential Equations.Series in Real Analysis 5. World Scientific, Singapore (1992). Zbl 0781.34003, MR 1200241, 10.1142/1875 |
Reference: | [44] Slavík, A.: Generalized differential equations: Differentiability of solutions with respect to initial conditions and parameters.J. Math. Anal. Appl. 402 (2013), 261-274. Zbl 1279.34013, MR 3023256, 10.1016/j.jmaa.2013.01.027 |
Reference: | [45] Torres, P. J.: Mathematical Models with Singularities. A Zoo of Singular Creatures.Atlantis Briefs in Differential Equations 1. Atlantis Press, Amsterdam (2015). Zbl 1305.00097, MR 3328358, 10.2991/978-94-6239-106-2 |
Reference: | [46] Tvrdý, M.: Linear distributional differential equations of the second order.Math. Bohem. 119 (1994), 415-436. Zbl 0819.34007, MR 1316594, 10.21136/MB.1994.126120 |
Reference: | [47] Tvrdý, M.: Differential and integral equations in the space of regulated functions.Mem. Differ. Equ. Math. Phys. 25 (2002), 1-104. Zbl 1081.34504, MR 1903190 |
Reference: | [48] Yeh, J.: Real Analysis. Theory of Measure and Integration.World Scientific, Hackensack (2014). Zbl 1301.26002, MR 3308472, 10.1142/9037 |
. |
Fulltext not available (moving wall 24 months)