| Title:
             | 
Discounted Markov decision processes with fuzzy costs (English) | 
| Author:
             | 
De-Jesús-Hernández, Salvador | 
| Author:
             | 
Cruz-Suárez, Hugo | 
| Author:
             | 
Montes-de-Oca, Raúl | 
| Language:
             | 
English | 
| Journal:
             | 
Kybernetika | 
| ISSN:
             | 
0023-5954 (print) | 
| ISSN:
             | 
1805-949X (online) | 
| Volume:
             | 
61 | 
| Issue:
             | 
1 | 
| Year:
             | 
2025 | 
| Pages:
             | 
58-78 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
This article concerns a class of discounted Markov decision processes on Borel spaces where, in contrast with the classical framework, the cost function $\widetilde C$ is a fuzzy function of a trapezoidal type, which is determined from a classical cost function $C$ by applying an affine transformation with fuzzy coefficients. Under certain conditions ensuring that the classical (or standard) model with a cost function $C$ has an optimal stationary policy $f_{o}$ with the optimal cost $V_{o}$, it is shown that such a policy is also optimal for the fuzzy model with a cost function $\widetilde C$, and that the optimal fuzzy value $\tilde{V}_{o}$ is obtained from $V_{o}$ via the same transformation used to go from $C$ to $\widetilde C$. And these results are obtained with respect to two cases: the max-order of the fuzzy numbers and the average ranking order of the trapezoidal fuzzy numbers. Besides, a fuzzy version of the classical linear-quadratic model without restrictions is presented. (English) | 
| Keyword:
             | 
discounted Markov decision processes | 
| Keyword:
             | 
trapezoidal fuzzy costs | 
| Keyword:
             | 
max-order | 
| Keyword:
             | 
average ranking | 
| MSC:
             | 
90C40 | 
| MSC:
             | 
93C42 | 
| DOI:
             | 
10.14736/kyb-2025-1-0058 | 
| . | 
| Date available:
             | 
2025-04-07T09:37:36Z | 
| Last updated:
             | 
2025-04-07 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/152925 | 
| . | 
| Reference:
             | 
[1] Aubin, J. P., Frankowska, H.: Set-Valued Analysis..Birkhäuser, Boston 2009. MR 2458436 | 
| Reference:
             | 
[2] Bertsekas, D.: Dynamic programming and optimal control: Volume I..Athena Sci. (2012). MR 3642732 | 
| Reference:
             | 
[3] Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R.: Finite-horizon and infinite-horizon Markov decision processes with trapezoidal fuzzy discounted rewards..Commun. Comput. Inf. Sci., Springer, Cham 1623 (2022), 171-192. MR 4487360 | 
| Reference:
             | 
[4] Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R.: Markov decision processes on finite spaces with fuzzy total reward..Kybernetika 58 (2022), 2, 180-199. MR 4467492, | 
| Reference:
             | 
[5] Cruz-Suárez, H., Montes-de-Oca, R.: An envelope theorem and some applications to discounted Markov decision processes..Math. Oper. Res. 67 (2008), 299-321. MR 2390061, | 
| Reference:
             | 
[6] Cruz-Suárez, H., Montes-de-Oca, R., Ortega-Gutiérrez, R. I.: An extended version of average Markov decision processes on discrete spaces under fuzzy environment..Kybernetika 59 (2023), 1,160-178. MR 4567846, | 
| Reference:
             | 
[7] Cruz-Suárez, H., Montes-de-Oca, R., Ortega-Gutiérrez, R.: Deterministic discounted Markov decision processes with fuzzy rewards/costs..Fuzzy Inf. Engrg. 15 (2023), 3, 274-290. | 
| Reference:
             | 
[8] Andrés-Sánchez, J. de: A systematic review of the interactions of fuzzy set theory and option pricing..Expert Syst. Appl. 223 (2023), 119868. | 
| Reference:
             | 
[9] Diamond, P., Kloeden, P.: Metric Spaces of Fuzzy Sets: Theory and Applications..World Scientific, Singapore 1994. MR 1337027 | 
| Reference:
             | 
[10] Figueroa-García, J. C., Hernández, G., Franco, C.: A review on history, trends and perspectives of fuzzy linear programming..Oper. Res. Perspect. 9 (2022), 100247. MR 4471476, | 
| Reference:
             | 
[11] Furukawa, N.: Parametric orders on fuzzy numbers and their roles in fuzzy optimization problems..Optimization 40 (1997), 171-192. MR 1620380, | 
| Reference:
             | 
[12] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria..Springer-Verlag, New York, 1996. Zbl 0840.93001, MR 1363487 | 
| Reference:
             | 
[13] Kambalimath, S., Deka, P. C.: A basic review of fuzzy logic applications in hydrology and water resources..Appl. Water Sci. 10 (2020), 8, 1-14. | 
| Reference:
             | 
[14] Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: Markov-type fuzzy decision processes with a discounted reward on a closed interval..Eur. J. Oper. Res. 92 (1996), 3, 649-662. MR 1328908, | 
| Reference:
             | 
[15] Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: Markov decision processes with fuzzy rewards..J. Nonlinear Convex Anal. 4 (1996), 1, 105-116. MR 1986973 | 
| Reference:
             | 
[16] Kurano, M., Hosaka, M., Song, J., Huang, Y.: Controlled Markov set-chains with discounting..J. Appl. Prob. 35 (1998), 3, 293-302. MR 1641785, | 
| Reference:
             | 
[17] López-Díaz, M., Ralescu, D. A.: Tools for fuzzy random variables: embeddings and measurabilities..Comput. Statist. Data Anal. 51 (2006), 109-114. MR 2297590, | 
| Reference:
             | 
[18] Puri, M. L., Ralescu, D. A.: Fuzzy random variable..J. Math. Anal. Appl. 114 (1986), 402-422. MR 0833596 | 
| Reference:
             | 
[19] Rani, D., Gulati, T. R.: A new approach to solve unbalanced transportation problems in imprecise environment..J. Transp. Secur. 7 (2014), 3, 277-287. | 
| Reference:
             | 
[20] Rani, D., Gulati, T. R., Kumar, A.: A method for unbalanced transportation problems in fuzzy environment..Sadhana 39 (2014), 3, 573-581. MR 3225832, | 
| Reference:
             | 
[21] Rezvani, S., Molani, M.: Representation of trapezoidal fuzzy numbers with shape function..Ann. Fuzzy Math. Inform. 8 (2014), 89-112. MR 3214770 | 
| Reference:
             | 
[22] Semmouri, A., Jourhmane, M., Belhallaj, Z.: Discounted Markov decision processes with fuzzy costs..Ann. Oper. Res. 295 (2020), 769-786. MR 4181708, | 
| Reference:
             | 
[23] Syropoulos, A., Grammenos, T.: A Modern Introduction to Fuzzy Mathematics..Wiley, New Jersey 2020. | 
| Reference:
             | 
[24] Zadeh, L.: Fuzzy sets..Inform. Control 8 (1965), 338-353. Zbl 0942.00007, MR 0219427, | 
| Reference:
             | 
[25] Zhou, W., Lou, D., Xu, Z.: Review of fuzzy investment research considering modelling environment and element fusion..Int. J. Syst. Sci. 53 (2022), 9, 1958-1982. MR 4446001, | 
| . |