Title:
|
A generalization of the mean-square derivative for fuzzy stochastic processes and some properties (English) |
Author:
|
Amirnia, Hadi |
Author:
|
Khastan, Alireza |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
61 |
Issue:
|
1 |
Year:
|
2025 |
Pages:
|
79-108 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The purpose of this paper is to generalize and develop a mean-square calculus for fuzzy stochastic processes and study their differentiability and integrability properties. Some results for second-order fuzzy stochastic processes are presented. (English) |
Keyword:
|
fuzzy numbers |
Keyword:
|
Hukuhara difference |
Keyword:
|
random variables |
Keyword:
|
second-order fuzzy stochastic processes |
Keyword:
|
mean-square calculus |
MSC:
|
03E72 |
MSC:
|
26E50 |
MSC:
|
28E10 |
DOI:
|
10.14736/kyb-2025-1-0079 |
. |
Date available:
|
2025-04-07T09:39:40Z |
Last updated:
|
2025-04-07 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152926 |
. |
Reference:
|
[1] Anastassiou, G., Gal, G. S.: On a fuzzy trigonometric approximation theorem of Weierstrass-type..J. Fuzzy Math. (2001), 701-708. MR 1859551 |
Reference:
|
[2] Bede, B., Gal, S. G.: Almost periodic fuzzy-number-valued functions..Fuzzy Sets Syst. 147 (2004), 3, 385-403. MR 2100833, |
Reference:
|
[3] Bede, B., Gal, S. G.: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations..Fuzzy Sets Syst. 151 (2005), 3, 581-599. MR 2126175, |
Reference:
|
[4] Bede, B., Rudas, I. J., Bencsik, A. L.: First order linear fuzzy differential equations under generalized differentiability..Inform. Sci. 177 (2007), 7, 1648-1662. MR 2303177, |
Reference:
|
[5] Chalco-Cano, Y., Maqui-Huamán, G. G., Silva, G., Jimenez-Gamero, M.: Algebra of generalized hukuhara differentiable interval-valued functions: Review and new properties..Fuzzy Sets Syst. 375 (2019), 53-69. MR 3999369, |
Reference:
|
[6] Dubois, D., Prade, H.: Towards fuzzy differential calculus. Part 3: Differentiation..Fuzzy Sets Syst. 8 (1982), 3, 225-233. MR 0669414, |
Reference:
|
[7] Feng, Y.: Mean-square integral and differential of fuzzy stochastic processes..Fuzzy Sets Syst. 102 (1999), 2, 271-280. MR 1674963, |
Reference:
|
[8] Feng, Y.: Convergence theorems for fuzzy random variables and fuzzy martingales..Fuzzy Sets Syst. 103 (1999), 3, 435-441. Zbl 0939.60027, MR 1669281, |
Reference:
|
[9] Feng, Y.: Mean-square Riemann-Stieltjes integrals of fuzzy stochastic processes and their applications..Fuzzy Sets Syst. 110 (2000), 1, 27-41. MR 1748106, |
Reference:
|
[10] Feng, Y.: Fuzzy stochastic differential systems..Fuzzy Sets Syst. 115 (2000), 3, 351-363. MR 1781454, |
Reference:
|
[11] Feng, Y., Hu, L., Shu, H.: The variance and covariance of fuzzy random variables and their applications..Fuzzy Sets Systems 120 (2001), 3, 487-497. Zbl 0984.60029, MR 1829266, |
Reference:
|
[12] Friedman, M., Ma, M., Kandel, A.: Fuzzy derivatives and fuzzy Cauchy problems using LP metric..In: Fuzzy Logic Foundations and Industrial Applications (D. Ruan, ed.), Springer, Boston 1996, pp. 57-72. |
Reference:
|
[13] Gasilov, N.: On exact solutions of a class of interval boundary value problems..Kybernetika 58 (2022), 376-399. MR 4494097, |
Reference:
|
[14] Gasilov, N., Amrahov, S. Emrah, Fatullayev, A. Golayoglu: Solution of linear differential equations with fuzzy boundary values..Fuzzy Sets Syst. 257 (2014), 169-183. MR 3267136, |
Reference:
|
[15] Gopal, D., Moreno, J. M., López, R. R.: Asymptotic fuzzy contractive mappings in fuzzy metric spaces..Kybernetika 60 (2024), 394-411. MR 4777315, |
Reference:
|
[16] Goetschel, R., Voxman, W.: Elementary fuzzy calculus..Fuzzy Sets Syst. 18 (1986), 1, 31-43. Zbl 0626.26014, MR 0825618, |
Reference:
|
[17] Kaleva, O.: On the convergence of fuzzy sets..Fuzzy Sets Syst. 17 (1985), 1, 53-65. Zbl 0584.54004, MR 0808463, |
Reference:
|
[18] Kaleva, O.: Fuzzy differential equations..Fuzzy Sets Syst. 24 (1987), 3, 301-317. Zbl 1100.34500, MR 0919058, |
Reference:
|
[19] Kratschmer, V.: Limit theorems for fuzzy-random variables..Fuzzy Sets Syst. 126 (2002), 2, 253-263. MR 1884692, |
Reference:
|
[20] Malinowski, M. T.: Some properties of strong solutions to stochastic fuzzy differential equations..Inform. Sci. 252 (2013), 62-80. MR 3123920, |
Reference:
|
[21] Mazandarani, M., Xiu, L.: A review on fuzzy differential equations..IEEE Access 9 (2021), 62195-62211. |
Reference:
|
[22] Ming, M.: On embedding problems of fuzzy number space: Part 5..Fuzzy Sets Syst. 55 (1993), 3, 313-318. MR 1223869, |
Reference:
|
[23] Nguyen, H. T.: A note on the extension principle for fuzzy sets..J. Math. Anal. Appl. 64 (1978), 2, 369-380. Zbl 0377.04004, MR 0480044, |
Reference:
|
[24] Puri, M. L., Ralescu, D. A.: Differentials of fuzzy functions..J. Math. Anal. Appl. 91 (1983), 2, 552-558. MR 0690888, |
Reference:
|
[25] Puri, M. L., Ralescu, D. A.: Fuzzy random variables..J. Math. Anal. Appl. 114 (1986), 2, 409-422. Zbl 0605.60038, MR 0833596, |
Reference:
|
[26] Puri, M. L., Ralescu, D. A.: Convergence theorem for fuzzy martingales..J. Math. Anal. Appl. 160 (1991), 1, 107-122. Zbl 0737.60005, MR 1124080, 10.1016/0022-247X(91)90293-9 |
Reference:
|
[27] Rojas-Medar, M., Jimenez-Gamero, M., Chalco-Cano, Y., Viera-Brandao, A.: Fuzzy quasilinear spaces and applications..Fuzzy Sets Syst. 152 (2005), 2, 173-190. MR 2138505, |
Reference:
|
[28] Seikkala, S.: On the fuzzy initial value problem..Fuzzy Sets Syst. 24 (1987), 3, 319-330. MR 0919059, |
Reference:
|
[29] Stefanini, L., Bede, B.: Generalized hukuhara differentiability of interval-valued functions and interval differential equations..Nonlinear Analysis: Theory Methods Appl. 71 (2009), 3, 1311-1328. MR 2527548, |
. |