Previous |  Up |  Next

Article

Title: A generalization of the mean-square derivative for fuzzy stochastic processes and some properties (English)
Author: Amirnia, Hadi
Author: Khastan, Alireza
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 61
Issue: 1
Year: 2025
Pages: 79-108
Summary lang: English
.
Category: math
.
Summary: The purpose of this paper is to generalize and develop a mean-square calculus for fuzzy stochastic processes and study their differentiability and integrability properties. Some results for second-order fuzzy stochastic processes are presented. (English)
Keyword: fuzzy numbers
Keyword: Hukuhara difference
Keyword: random variables
Keyword: second-order fuzzy stochastic processes
Keyword: mean-square calculus
MSC: 03E72
MSC: 26E50
MSC: 28E10
DOI: 10.14736/kyb-2025-1-0079
.
Date available: 2025-04-07T09:39:40Z
Last updated: 2025-04-07
Stable URL: http://hdl.handle.net/10338.dmlcz/152926
.
Reference: [1] Anastassiou, G., Gal, G. S.: On a fuzzy trigonometric approximation theorem of Weierstrass-type..J. Fuzzy Math. (2001), 701-708. MR 1859551
Reference: [2] Bede, B., Gal, S. G.: Almost periodic fuzzy-number-valued functions..Fuzzy Sets Syst. 147 (2004), 3, 385-403. MR 2100833,
Reference: [3] Bede, B., Gal, S. G.: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations..Fuzzy Sets Syst. 151 (2005), 3, 581-599. MR 2126175,
Reference: [4] Bede, B., Rudas, I. J., Bencsik, A. L.: First order linear fuzzy differential equations under generalized differentiability..Inform. Sci. 177 (2007), 7, 1648-1662. MR 2303177,
Reference: [5] Chalco-Cano, Y., Maqui-Huamán, G. G., Silva, G., Jimenez-Gamero, M.: Algebra of generalized hukuhara differentiable interval-valued functions: Review and new properties..Fuzzy Sets Syst. 375 (2019), 53-69. MR 3999369,
Reference: [6] Dubois, D., Prade, H.: Towards fuzzy differential calculus. Part 3: Differentiation..Fuzzy Sets Syst. 8 (1982), 3, 225-233. MR 0669414,
Reference: [7] Feng, Y.: Mean-square integral and differential of fuzzy stochastic processes..Fuzzy Sets Syst. 102 (1999), 2, 271-280. MR 1674963,
Reference: [8] Feng, Y.: Convergence theorems for fuzzy random variables and fuzzy martingales..Fuzzy Sets Syst. 103 (1999), 3, 435-441. Zbl 0939.60027, MR 1669281,
Reference: [9] Feng, Y.: Mean-square Riemann-Stieltjes integrals of fuzzy stochastic processes and their applications..Fuzzy Sets Syst. 110 (2000), 1, 27-41. MR 1748106,
Reference: [10] Feng, Y.: Fuzzy stochastic differential systems..Fuzzy Sets Syst. 115 (2000), 3, 351-363. MR 1781454,
Reference: [11] Feng, Y., Hu, L., Shu, H.: The variance and covariance of fuzzy random variables and their applications..Fuzzy Sets Systems 120 (2001), 3, 487-497. Zbl 0984.60029, MR 1829266,
Reference: [12] Friedman, M., Ma, M., Kandel, A.: Fuzzy derivatives and fuzzy Cauchy problems using LP metric..In: Fuzzy Logic Foundations and Industrial Applications (D. Ruan, ed.), Springer, Boston 1996, pp. 57-72.
Reference: [13] Gasilov, N.: On exact solutions of a class of interval boundary value problems..Kybernetika 58 (2022), 376-399. MR 4494097,
Reference: [14] Gasilov, N., Amrahov, S. Emrah, Fatullayev, A. Golayoglu: Solution of linear differential equations with fuzzy boundary values..Fuzzy Sets Syst. 257 (2014), 169-183. MR 3267136,
Reference: [15] Gopal, D., Moreno, J. M., López, R. R.: Asymptotic fuzzy contractive mappings in fuzzy metric spaces..Kybernetika 60 (2024), 394-411. MR 4777315,
Reference: [16] Goetschel, R., Voxman, W.: Elementary fuzzy calculus..Fuzzy Sets Syst. 18 (1986), 1, 31-43. Zbl 0626.26014, MR 0825618,
Reference: [17] Kaleva, O.: On the convergence of fuzzy sets..Fuzzy Sets Syst. 17 (1985), 1, 53-65. Zbl 0584.54004, MR 0808463,
Reference: [18] Kaleva, O.: Fuzzy differential equations..Fuzzy Sets Syst. 24 (1987), 3, 301-317. Zbl 1100.34500, MR 0919058,
Reference: [19] Kratschmer, V.: Limit theorems for fuzzy-random variables..Fuzzy Sets Syst. 126 (2002), 2, 253-263. MR 1884692,
Reference: [20] Malinowski, M. T.: Some properties of strong solutions to stochastic fuzzy differential equations..Inform. Sci. 252 (2013), 62-80. MR 3123920,
Reference: [21] Mazandarani, M., Xiu, L.: A review on fuzzy differential equations..IEEE Access 9 (2021), 62195-62211.
Reference: [22] Ming, M.: On embedding problems of fuzzy number space: Part 5..Fuzzy Sets Syst. 55 (1993), 3, 313-318. MR 1223869,
Reference: [23] Nguyen, H. T.: A note on the extension principle for fuzzy sets..J. Math. Anal. Appl. 64 (1978), 2, 369-380. Zbl 0377.04004, MR 0480044,
Reference: [24] Puri, M. L., Ralescu, D. A.: Differentials of fuzzy functions..J. Math. Anal. Appl. 91 (1983), 2, 552-558. MR 0690888,
Reference: [25] Puri, M. L., Ralescu, D. A.: Fuzzy random variables..J. Math. Anal. Appl. 114 (1986), 2, 409-422. Zbl 0605.60038, MR 0833596,
Reference: [26] Puri, M. L., Ralescu, D. A.: Convergence theorem for fuzzy martingales..J. Math. Anal. Appl. 160 (1991), 1, 107-122. Zbl 0737.60005, MR 1124080, 10.1016/0022-247X(91)90293-9
Reference: [27] Rojas-Medar, M., Jimenez-Gamero, M., Chalco-Cano, Y., Viera-Brandao, A.: Fuzzy quasilinear spaces and applications..Fuzzy Sets Syst. 152 (2005), 2, 173-190. MR 2138505,
Reference: [28] Seikkala, S.: On the fuzzy initial value problem..Fuzzy Sets Syst. 24 (1987), 3, 319-330. MR 0919059,
Reference: [29] Stefanini, L., Bede, B.: Generalized hukuhara differentiability of interval-valued functions and interval differential equations..Nonlinear Analysis: Theory Methods Appl. 71 (2009), 3, 1311-1328. MR 2527548,
.

Files

Files Size Format View
Kybernetika_61-2025-1_5.pdf 650.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo