Title: | The Clairaut's theorem on rotational surfaces in pseudo-Euclidean 4-space with index 2 (English) |
Author: | Almaz, Fatma |
Author: | Külahci, Mihriban A. |
Language: | English |
Journal: | Commentationes Mathematicae Universitatis Carolinae |
ISSN: | 0010-2628 (print) |
ISSN: | 1213-7243 (online) |
Volume: | 65 |
Issue: | 1 |
Year: | 2024 |
Pages: | 63-77 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Clairaut’s theorem is expressed on the surfaces of rotation in semi Euclidean 4-space. Moreover, the general equations of time-like geodesic curves are characterized according to the results of Clairaut's theorem on the hyperbolic surfaces of rotation and the elliptic surface of rotation, respectively. (English) |
Keyword: | Clairaut's theorem |
Keyword: | surfaces of rotation |
Keyword: | pseudo-Euclidean 4-space |
Keyword: | geodesic curve |
MSC: | 53A35 |
MSC: | 53B30 |
MSC: | 53B50 |
DOI: | 10.14712/1213-7243.2025.001 |
. | |
Date available: | 2025-04-24T07:50:19Z |
Last updated: | 2025-04-25 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152945 |
. | |
Reference: | [1] Almaz F., Külahcı M. A.: On $x$-magnetic surfaces generated by trajectory of $x$-magnetic curves in null cone.General Letters in Mathematics 5 (2018), no. 2, 84–92. 10.31559/glm2018.5.2.3 |
Reference: | [2] Almaz F., Külahcı M. A.: A different interpretation on magnetic surfaces generated by special magnetic curve in $Q^{2}\subset E_{1}^{3}$.Adiyaman University Journal of Science 10 (2020), no. 2, 524–547. |
Reference: | [3] Almaz F., Külahcı M. A.: The notes on rotational surfaces in Galilean space.Int. J. Geom. Methods Mod. Phys. 18 (2021), no. 2, Paper No. 2150017, 15 pages. MR 4209930, 10.1142/S0219887821500171 |
Reference: | [4] Almaz F., Külahcı M. A.: A survey on tube surfaces in Galilean $3$-space.Journal of Polytechnic 25 (2022), no. 3, 1133–1142. |
Reference: | [5] Almaz F., Külahcı M. A.: The research on rotational surfaces in pseudo Euclidean $4$-space with index $2$.Acta Math. Univ. Comenian. (N.S.) 92 (2023), no. 3, 263–279. MR 4650249 |
Reference: | [6] Arnol'd V. I.: Mathematical Methods of Classical Mechanics.Graduate Texts in Mathematics, 60, Springer, New York, 1989. MR 0997295, 10.1007/978-1-4757-2063-1 |
Reference: | [7] Ganchev G., Milousheva V.: General rotational surfaces in the $4$-dimensional Minkowski space.Turkish. J. Math. 38 (2014), no. 5, 883–895. MR 3225667, 10.3906/mat-1312-10 |
Reference: | [8] Goemans W.: Flat double rotational surfaces in Euclidean and Lorentz–Minkowski $4$-space.Publ. Inst. Math. (Beograd) (N.S.) 103 (117) (2018), 61–68. MR 3812047, 10.2298/PIM1817061G |
Reference: | [9] Hoffmann C. M., Zhou J.: Visualization of surfaces in four-dimensional space.Purdue University, Department of Computer Science Technical Reports (1990), Paper 814, 37 pages. |
Reference: | [10] Lerner D.: Lie Derivatives, Isometries, and Killing Vectors.Lawrence, Kansas, Department of Mathematics, Univ. of Cansas, 2010. |
Reference: | [11] Lugo G.: Differential Geometry in Physics.University of North Carolina Wilmington, UNCW, 2021. |
Reference: | [12] Montiel S., Ros A.: Curves and Surfaces.Graduate Studies in Mathematics, 69, American Mathematical Society, Providence; Real Sociedad Matemática Española, Madrid, 2009. MR 2522595, 10.1090/gsm/069 |
Reference: | [13] Pressley A.: Elementary Differential Geometry.Springer Undergraduate Mathematics Series, Springer, London, 2010. MR 2598317 |
Reference: | [14] Shifrin T.: Differential Geometry: A First Course in Curves and Surfaces.Preliminary version, University of Georgia, 2011. MR 0726220 |
Reference: | [15] Yaglom I. M.: A Simple Non-Euclidean Geometry and Its Physical Basis.Heidelberg Science Library, Springer, New York, 1979. MR 0520230 |
. |
Fulltext not available (moving wall 24 months)