Previous |  Up |  Next

Article

Title: The Clairaut's theorem on rotational surfaces in pseudo-Euclidean 4-space with index 2 (English)
Author: Almaz, Fatma
Author: Külahci, Mihriban A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 65
Issue: 1
Year: 2024
Pages: 63-77
Summary lang: English
.
Category: math
.
Summary: Clairaut’s theorem is expressed on the surfaces of rotation in semi Euclidean 4-space. Moreover, the general equations of time-like geodesic curves are characterized according to the results of Clairaut's theorem on the hyperbolic surfaces of rotation and the elliptic surface of rotation, respectively. (English)
Keyword: Clairaut's theorem
Keyword: surfaces of rotation
Keyword: pseudo-Euclidean 4-space
Keyword: geodesic curve
MSC: 53A35
MSC: 53B30
MSC: 53B50
DOI: 10.14712/1213-7243.2025.001
.
Date available: 2025-04-24T07:50:19Z
Last updated: 2025-04-25
Stable URL: http://hdl.handle.net/10338.dmlcz/152945
.
Reference: [1] Almaz F., Külahcı M. A.: On $x$-magnetic surfaces generated by trajectory of $x$-magnetic curves in null cone.General Letters in Mathematics 5 (2018), no. 2, 84–92. 10.31559/glm2018.5.2.3
Reference: [2] Almaz F., Külahcı M. A.: A different interpretation on magnetic surfaces generated by special magnetic curve in $Q^{2}\subset E_{1}^{3}$.Adiyaman University Journal of Science 10 (2020), no. 2, 524–547.
Reference: [3] Almaz F., Külahcı M. A.: The notes on rotational surfaces in Galilean space.Int. J. Geom. Methods Mod. Phys. 18 (2021), no. 2, Paper No. 2150017, 15 pages. MR 4209930, 10.1142/S0219887821500171
Reference: [4] Almaz F., Külahcı M. A.: A survey on tube surfaces in Galilean $3$-space.Journal of Polytechnic 25 (2022), no. 3, 1133–1142.
Reference: [5] Almaz F., Külahcı M. A.: The research on rotational surfaces in pseudo Euclidean $4$-space with index $2$.Acta Math. Univ. Comenian. (N.S.) 92 (2023), no. 3, 263–279. MR 4650249
Reference: [6] Arnol'd V. I.: Mathematical Methods of Classical Mechanics.Graduate Texts in Mathematics, 60, Springer, New York, 1989. MR 0997295, 10.1007/978-1-4757-2063-1
Reference: [7] Ganchev G., Milousheva V.: General rotational surfaces in the $4$-dimensional Minkowski space.Turkish. J. Math. 38 (2014), no. 5, 883–895. MR 3225667, 10.3906/mat-1312-10
Reference: [8] Goemans W.: Flat double rotational surfaces in Euclidean and Lorentz–Minkowski $4$-space.Publ. Inst. Math. (Beograd) (N.S.) 103 (117) (2018), 61–68. MR 3812047, 10.2298/PIM1817061G
Reference: [9] Hoffmann C. M., Zhou J.: Visualization of surfaces in four-dimensional space.Purdue University, Department of Computer Science Technical Reports (1990), Paper 814, 37 pages.
Reference: [10] Lerner D.: Lie Derivatives, Isometries, and Killing Vectors.Lawrence, Kansas, Department of Mathematics, Univ. of Cansas, 2010.
Reference: [11] Lugo G.: Differential Geometry in Physics.University of North Carolina Wilmington, UNCW, 2021.
Reference: [12] Montiel S., Ros A.: Curves and Surfaces.Graduate Studies in Mathematics, 69, American Mathematical Society, Providence; Real Sociedad Matemática Española, Madrid, 2009. MR 2522595, 10.1090/gsm/069
Reference: [13] Pressley A.: Elementary Differential Geometry.Springer Undergraduate Mathematics Series, Springer, London, 2010. MR 2598317
Reference: [14] Shifrin T.: Differential Geometry: A First Course in Curves and Surfaces.Preliminary version, University of Georgia, 2011. MR 0726220
Reference: [15] Yaglom I. M.: A Simple Non-Euclidean Geometry and Its Physical Basis.Heidelberg Science Library, Springer, New York, 1979. MR 0520230
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo