Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
additivity; almost connected im kleinen; analytic set; aposyndetic continuum; atomic map; continuum; decomposable continuum; $G_\delta$ set; hyperspace; indecomposable continuum; monotone map; property of Kelley; set function $\mathcal{K}$; set function $\mathcal{T}$; set function $\wp$; set functions continuous on continua; uniform property of Effros; upper semicontinuous function
Summary:
Inspired by the work that Professor Janusz R. Prajs did on homogeneous metric continua in his paper (2010) and the version of his work for Hausdorff continua with the uniform property of Effros done by this author, we introduce a new set function, $\wp$, and present properties of it.
References:
[1] Bellamy D. P., Porter K. F.: A homogeneous continuum that is non-Effros. Proc. Am. Math. Soc. 113 (1991), no. 2, 593–598. DOI 10.1090/S0002-9939-1991-1070510-X | MR 1070510
[2] Camargo J., Macías S.: Dynamics with set-valued functions and coselections. Qual. Theory Dyn. Syst. 21 (2022), no. 2, Paper No. 25, 43 pages. DOI 10.1007/s12346-021-00556-9 | MR 4372608
[3] Charatonik W. J.: A homogeneous continuum without the property of Kelley. Topology Appl. 96 (1999), no. 3, 209–216. DOI 10.1016/S0166-8641(98)00055-8 | MR 1709689
[4] Engelking R.: General Topology. Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[5] Goodykoontz J. T, Jr.: Some functions on hyperspaces of hereditarily unicoherent continua. Fund. Math. 95 (1977), no. 1, 1–10. DOI 10.4064/fm-95-1-1-10 | MR 0436097
[6] Gorka S.: Several Set Functions and Continuous Maps. Thesis Ph.D. Dissertation, University of Delaware, Delaware, 1997. MR 2696379
[7] Hagopian C. L.: Mutual aposyndesis. Proc. Amer. Math. Soc. 23 (1969), 615–622. DOI 10.1090/S0002-9939-1969-0247612-9 | MR 0247612
[8] Hagopian C. L.: Concerning arcwise connectedness and the existence of simple closed curves in plane continua. Trans. Amer. Math. Soc. 147 (1970), 389–402. DOI 10.1090/S0002-9947-1970-0254823-8 | MR 0254823
[9] Ingram W. T., Mahavier W. S.: Inverse limits of upper semi-continuous set valued functions. Houston J. Math. 32 (2006), no. 1, 119–130. MR 2202356
[10] Jones F. B.: Concerning non-aposyndetic continua. Amer. J. Math. 70 (1948), 403–413. DOI 10.2307/2372339 | MR 0025161
[11] Kechris A. S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, 156, Springer, New York, 1995. MR 1321597 | Zbl 0819.04002
[12] Macías S.: Hausdorff continua and the uniform property of Effros. Topology Appl. 230 (2017), 338–352. DOI 10.1016/j.topol.2017.08.009 | MR 3702777
[13] Macías S.: On Jones’ set function $\mathcal{T}$ and the property of Kelley for Hausdorff continua. Topology Appl. 226 (2017), 51–65. MR 3660264
[14] Macías S.: Topics on Continua. Springer, Cham, 2018. MR 3823258
[15] Macías S.: Set Function $\mathcal{T}$ - an Account on F. B. Jones' Contributions to Topology. Developments in Mathematics, 67, Springer, Cham, 2021. MR 4238567
[16] Macías S.: The uniform Effros property and local homogeneity. Math. Slovaca 73 (2023), no. 4, 1013–1022. DOI 10.1515/ms-2023-0075 | MR 4623271
[17] Makuchowski W.: On local connectedness in hyperspaces. Bull. Polish Acad. Sci. Math. 47 (1999), no. 2, 119–126. MR 1686673
[18] Mrówka S.: On the convergence of nets of sets. Fund. Math. 45 (1958), 237–346. DOI 10.4064/fm-45-1-247-253 | MR 0098359
[19] Nadler S. B., Jr.: Hyperspaces of Sets: A Text with Research Questions. Aportaciones Matemáticas: Textos, 33, Sociedad Matemática Mexicana, México, 2006. MR 2293338
[20] Prajs J. R.: Mutually aposyndetic decomposition of homogeneous continua. Canad. J. Math. 62 (2010), no. 1, 182–201. DOI 10.4153/CJM-2010-010-4 | MR 2597029
[21] Rogers J. T., Jr.: Orbits of higher-dimensional hereditarily indecomposable continua. Proc. Amer. Math. Soc. 95 (1985), no. 3, 483–486. DOI 10.1090/S0002-9939-1985-0806092-1 | MR 0806092
[22] Rogers J. T., Jr.: Higher dimensional aposyndetic decompositions. Proc. Amer. Math. Soc. 131 (2003), no. 10, 3285–3288. DOI 10.1090/S0002-9939-03-06888-6 | MR 1992870
[23] Willard S.: General Topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, 1970. MR 0264581 | Zbl 1052.54001
Partner of
EuDML logo