Article
Keywords:
continuum; symmetric product; quotient space; hyperspace; induced mapping
Summary:
Given a metric continuum $X$ and a positive integer $n$, $F_{n}(X)$ denotes the hyperspace of all nonempty subsets of $X$ with at most $n$ points endowed with the Hausdorff metric. For $K\in F_{n}(X)$, $F_{n}(K,X)$ denotes the set of elements of $F_{n}(X)$ containing $K$ and $F_{n}^K(X)$ denotes the quotient space obtained from $F_{n}(X)$ by shrinking $F_{n}(K,X)$ to one point set. Given a map $f\colon X\to Y$ between continua, $f_{n}\colon F_{n}(X)\to F_{n}(Y)$ denotes the induced map defined by $f_{n}(A)=\nobreak f(A)$. Let $K\in F_{n}(X)$, we shall consider the induced map in the natural way $f_{n,K}\colon F_{n}^K(X)\to F_{n}^{f(K)}(Y)$. In this paper we consider the maps $f$, $f_{n}$, $f_{n,K}$ for some $K\in F_n(X)$ and $f_{n,K}$ for each $K\in F_n(X)$; and we study relationship between them for the following classes of maps: homeomorphisms, monotone, confluent, light and open maps.
References:
[2] Castañeda-Alvarado E., Mondragón R. C., Ordoñez N., Orozco-Zitli F.:
The hyperspace $F_n^K(X)$. Bull. Iranian Math. Soc. 47 (2021), no. 3, 659–678.
MR 4249170
[4] Higuera G., Illanes A.:
Induced mappings on symmetric products. Topology Proc. 37 (2011), 367–401.
MR 2740654
[5] Hosokawa H.:
Induced mappings between hyperspaces II. Bull. Tokyo Gakugei Univ. (4) 44 (1992), 1–7.
MR 1193338
[6] Kuratowski K.:
Topology. Academic Press, New York, London, Państwowe Wydawnictwo Naukowe, Warsaw, 1968.
Zbl 0849.01044
[7] Macías S.:
Aposyndetic properties of symmetric products of continua. Topology Proc. 22 (1997), 281–296.
MR 1657883
[8] Macías S.:
Topics on Continua. Pure Appl. Math. Ser., 275, Chapman and Hall/CRC, Taylor and Francis Group, Boca Raton, 2005.
MR 2147759
[9] Maćkowiak T.:
Continuous Mappings on Continua. Dissertationes Math., Rozprawy Mat., 158, 1979.
MR 0522934
[10] Nadler S. B., Jr.:
Hyperspaces of Sets. A Text with Research Questions, Monographs and Texbooks in Pure and Applied Mathematics, 49, Marcel Dekker, New York-Basel, 1978.
MR 0500811 |
Zbl 1125.54001