Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
braided monoidal category; Hopf algebra; Hopf brace; relative Rota-Baxter operator
Summary:
The present article is devoted to introduce, in a braided monoidal setting, the notion of module over a relative Rota-Baxter operator. It is proved that there exists an adjunction between the category of modules associated to an invertible relative Rota-Baxter operator and the category of modules associated to a Hopf brace, which induces an equivalence by assuming certain additional hypothesis. Moreover, the notion of projection between relative Rota-Baxter operators is defined, and it is proved that those which are called ``strong'' give rise to a module according to the previous definition in the cocommutative setting.
References:
[1] Álvarez, J. N. Alonso, Vilaboa, J. M. Fernández: Cleft extensions in braided categories. Commun. Algebra 28 (2000), 3185-3196. DOI 10.1080/00927870008827018 | MR 1765310 | Zbl 0959.18005
[2] Angiono, I., Galindo, C., Vendramin, L.: Hopf braces and Yang-Baxter operators. Proc. Am. Math. Soc. 145 (2017), 1981-1995. DOI 10.1090/proc/13395 | MR 3611314 | Zbl 1392.16032
[3] Baxter, R. J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70 (1972), 193-228. DOI 10.1016/0003-4916(72)90335-1 | MR 0290733 | Zbl 0236.60070
[4] Bespalov, Y.: Crossed modules and quantum groups in braided categories. Appl. Categ. Struct. 5 (1997), 155-204. DOI 10.1023/A:1008674524341 | MR 1456522 | Zbl 0881.18010
[5] Blattner, B. J., Cohen, M., Montgomery, S.: Crossed products and inner actions of Hopf algebras. Trans. Am. Math. Soc. 298 (1986), 671-711. DOI 10.1090/S0002-9947-1986-0860387-X | MR 0860387 | Zbl 0619.16004
[6] Brzeziński, T.: Trusses: Between braces and rings. Trans. Am. Math. Soc. 372 (2019), 4149-4176. DOI 10.1090/tran/7705 | MR 4009388 | Zbl 1471.16053
[7] Drinfel'd, V. G.: Quantum groups. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 AMS, Providence (1987), 798-820. MR 0934283 | Zbl 0667.16003
[8] Drinfel'd, V. G.: On some unsolved problems in quantum group theory. Quantum Groups Lecture Notes in Mathematics 1510. Springer, Berlin (1992), 1-8. DOI 10.1007/BFb0101175 | MR 1183474 | Zbl 0765.17014
[9] Etingof, P., Schedler, T., Soloviev, A.: Set-theoretical solutions to the quantum Yang-Baxter equation. Duke Math. J. 100 (1999), 169-209. DOI 10.1215/S0012-7094-99-10007-X | MR 1722951 | Zbl 0969.81030
[10] Vilaboa, J. M. Fernández, Rodríguez, R. González, Pérez, B. Ramos: Categorical isomorphisms for Hopf braces. (to appear) in Hacet. J. Math. Stat 25 pages. DOI https://doi.org/10.15672/hujms.1511335
[11] Vilaboa, J. M. Fernández, Rodríguez, R. González, Pérez, B. Ramos, Raposo, A. B. Rodríguez: Projections of Hopf braces. Commun. Algebra 53 (2025), 3008-3045. DOI 10.1080/00927872.2025.2452345 | MR 4898737
[12] Gateva-Ivanova, T.: A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation. J. Math. Phys. 45 (2004), 3828-3858. DOI 10.1063/1.1788848 | MR 2095675 | Zbl 1065.16037
[13] Goncharov, M.: Rota-Baxter operators on cocommutative Hopf algebras. J. Algebra 582 (2021), 39-56. DOI 10.1016/j.jalgebra.2021.04.024 | MR 4256904 | Zbl 1505.17012
[14] Rodríguez, R. González: The fundamental theorem of Hopf modules for Hopf braces. Linear Multilinear Algebra 70 (2022), 5146-5156. DOI 10.1080/03081087.2021.1904814 | MR 4525211 | Zbl 1504.18015
[15] Rodríguez, R. González, Raposo, A. B. Rodríguez: Categorical equivalences for Hopf trusses and their modules. Available at https://arxiv.org/abs/2312.06520 (2023), 19 pages. DOI 10.48550/arXiv.2312.06520
[16] Guarnieri, L., Vendramin, L.: Skew braces and the Yang-Baxter equation. Math. Comput. 86 (2017), 2519-2534. DOI 10.1090/mcom/3161 | MR 3647970 | Zbl 1371.16037
[17] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155. Springer, New York (1995). DOI 10.1007/978-1-4612-0783-2 | MR 1321145 | Zbl 0808.17003
[18] Li, Y., Sheng, Y., Tang, R.: Post-Hopf algebras, relative Rota-Baxter operators and solutions of the Yang-Baxter equation. J. Noncommut. Geom. 18 (2024), 605-630. DOI 10.4171/jncg/537 | MR 4721043 | Zbl 07828328
[19] Majid, S.: Cross products by braided groups and bosonization. J. Algebra 163 (1994), 165-190. DOI 10.1006/jabr.1994.1011 | MR 1257312 | Zbl 0807.16036
[20] Radford, D. E.: The structure of Hopf algebras with a projection. J. Algebra 92 (1985), 322-347. DOI 10.1016/0021-8693(85)90124-3 | MR 0778452 | Zbl 0549.16003
[21] Rump, W.: Braces, radical rings, and the quantum Yang-Baxter equation. J. Algebra 307 (2007), 153-170. DOI 10.1016/j.jalgebra.2006.03.040 | MR 2278047 | Zbl 1115.16022
[22] Schauenburg, P.: On the braiding on a Hopf algebra in a braided category. New York J. Math. 4 (1998), 259-263. MR 1656075 | Zbl 0914.16017
[23] Sweedler, M. E.: Hopf Algebras. W. A. Benjamin, New York (1969). MR 0252485 | Zbl 0194.32901
[24] Yang, C. N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19 (1967), 1312-1315. DOI 10.1103/PhysRevLett.19.1312 | MR 0261870 | Zbl 0152.46301
Partner of
EuDML logo