Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$w$-universal injective; $w$-flat module; $w$-IF ring; $w$-coherent ring
Summary:
Let $R$ be a commutative ring and $w$ be the $w$-operation on $R$. We introduce the concept of $w$-universal injective modules and establish their fundamental properties. It is shown that the product of $E(R/{\frak m})$, where ${\frak m}$ ranges over maximal $w$-ideals of $R$, is a \hbox {$w$-universal} injective $w$-module over $R$, albeit not necessarily a universal injective \hbox {$R$-module}. As applications, we characterize $w$-IF rings and $w$-coherent rings using $w$-universal injective modules. Specifically, we demonstrate that $R$ is a $w$-IF ring if and only if $R$ is $w$-coherent and $E(R/{\frak m})$ is a flat $R$-module for every ${\frak m} \in w \text {-Max}(R)$. These results extend existing results and provide deeper insights into the structure of $w$-modules.
References:
[1] Kim, H.: Module-theoretic characterizations of $t$-linkative domains. Commun. Algebra 36 (2008), 1649-1670. DOI 10.1080/00927870701872513 | MR 2420087 | Zbl 1146.13001
[2] Matlis, E.: Reflexive domains. J. Algebra 8 (1968), 1-33. DOI 10.1016/0021-8693(68)90031-8 | MR 0220713 | Zbl 0191.32301
[3] Matlis, E.: Commutative coherent rings. Can. J. Math. 34 (1982), 1240-1244. DOI 10.4153/CJM-1982-085-2 | MR 0678666 | Zbl 0518.13011
[4] Matlis, E.: Commutative semi-coherent and semi-regular rings. J. Algebra 95 (1985), 343-372. DOI 10.1016/0021-8693(85)90108-5 | MR 0801272 | Zbl 0596.13014
[5] Wang, F.: Finitely presented type modules and $w$-coherent rings. J. Sichuan Normal Univ., Nat. Sci. 33 (2010), 1-9 Chinese. DOI 10.3969/j.issn.1001-8395.2010.01.001 | Zbl 1240.13021
[6] Wang, F., Kim, H.: Foundations of Commutative Rings and Their Modules. Algebra and Applications 22. Springer, Singapore (2016). DOI 10.1007/978-981-10-3337-7 | MR 3587977 | Zbl 1367.13001
[7] Wang, F., Kim, H.: Relative FP-injective modules and relative IF rings. Commun. Algebra 49 (2021), 3552-3582. DOI 10.1080/00927872.2021.1900861 | MR 4283167 | Zbl 1510.13004
[8] Wang, F., Qiao, L.: A homological characterization of Krull domains. II. Commun. Algebra 47 (2019), 1917-1929. DOI 10.1080/00927872.2018.1524007 | MR 3977710 | Zbl 1437.13029
[9] Wang, F., Qiao, L.: Two applications of Nagata rings and modules. J. Algebra Appl. 19 (2020), Article ID 2050115, 15 pages. DOI 10.1142/S0219498820501157 | MR 4120092 | Zbl 1440.13069
[10] Yin, H., Wang, F., Zhu, X., Chen, Y.: $w$-modules over commutative rings. J. Korean Math. Soc. 48 (2011), 207-222. DOI 10.4134/JKMS.2011.48.1.207 | MR 2778002 | Zbl 1206.13005
[11] Zhang, X., Wang, F.: On characterizations of $w$-coherent rings. II. Commun. Algebra 49 (2021), 3926-3940. DOI 10.1080/00927872.2021.1909607 | MR 4290119 | Zbl 1478.13016
[12] Zhang, X., Wang, F., Qi, W.: On characterizations of $w$-coherent rings. Commun. Algebra 48 (2020), 4681-4697. DOI 10.1080/00927872.2020.1769121 | MR 4142066 | Zbl 1448.13020
[13] Zhou, D. C., Wang, F. G.: The direct and inverse limits of $w$-modules. Commun. Algebra 44 (2016), 2495-2500. DOI 10.1080/00927872.2015.1053907 | MR 3492169 | Zbl 1347.13006
Partner of
EuDML logo