Previous |  Up |  Next

Article

Title: On a certain subclass of analytic functions defined by $q$-Sălăgean operator associated with operator on Hilbert space (English)
Author: Bulut, Serap
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 3
Year: 2025
Pages: 359-370
Summary lang: English
.
Category: math
.
Summary: Using a Hilbert space operator, we define a new subclass of analytic functions defined by $p$-valent $q$-Sălăgean operator and determine coefficient estimates, distortion bounds, radii of close-to-convexity, starlikeness, and convexity for the functions in this class. We also investigate extreme points and the modified Hadamard product. (English)
Keyword: analytic function
Keyword: coefficient estimates
Keyword: Hadamard product
Keyword: Hilbert space operator
MSC: 30C45
MSC: 30C50
MSC: 47B38
DOI: 10.21136/MB.2024.0006-24
.
Date available: 2025-09-26T14:18:34Z
Last updated: 2025-09-26
Stable URL: http://hdl.handle.net/10338.dmlcz/153081
.
Reference: [1] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory.Pure and Applied Mathematics 7. Interscience Publishers, New York (1958). Zbl 0084.10402, MR 0117523
Reference: [2] El-Qadeem, A. H., Mamon, M. A.: Comprehensive subclasses of multivalent functions with negative coefficients defined by using a $q$-difference operator.Trans. A. Razmadze Math. Inst. 172 (2018), 510-526. Zbl 1421.30019, MR 3907641, 10.1016/j.trmi.2018.04.002
Reference: [3] Fan, K.: Analytic functions of a proper contraction.Math. Z. 160 (1978), 275-290. Zbl 0455.47013, MR 0482310, 10.1007/BF01237041
Reference: [4] Ghanim, F., Darus, M.: On new subclass of analytic $p$-valent function with negative coefficient for operator on Hilbert space.Int. Math. Forum 3 (2008), 69-77. Zbl 1159.30311, MR 2373487
Reference: [5] Jackson, F. H.: On $q$-functions and a certain difference operator.Trans. Royal Soc. Edinburgh 46 (1909), 253-281. 10.1017/S0080456800002751
Reference: [6] Jackson, F. H.: On $q$-definite integrals.Quar. J. Pure Appl. Math. 41 (1910), 193-203 \99999JFM99999 41.0317.04.
Reference: [7] Joshi, S., Joshi, S. B., Mohapatra, R.: On a subclass of analytic functions for operator on a Hilbert space.Stud. Univ. Babeş-Bolyai, Math. 61 (2016), 147-153. Zbl 1389.30055, MR 3517477
Reference: [8] Kim, Y. C., Choi, J. H., Lee, J. S.: Generalized fractional calculus to a subclass of analytic functions for operators on Hilbert space.Int. J. Math. Math. Sci. 21 (1998), 671-676. Zbl 0912.30003, MR 1642192, 10.1155/S0161171298000921
Reference: [9] Yu, X.: A subclass of analytic $p$-valent functions for operator on Hilbert space.Math. Jap. 40 (1994), 303-308. Zbl 0843.30019, MR 1297246
.

Files

Files Size Format View
MathBohem_150-2025-3_4.pdf 209.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo