Previous |  Up |  Next

Article

Title: A note on Kurzweil-Henstock's anticipating non-stochastic integral (English)
Author: Ng, Yu Xin
Author: Toh, Tin Lam
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 3
Year: 2025
Pages: 371-392
Summary lang: English
.
Category: math
.
Summary: Motivated by the study of anticipating stochastic integrals using Kurzweil-Henstock approach, we use anticipating interval-point pairs (with the tag as the right-end point of the interval) in studying non-stochastic integral, which we call the Kurzweil-Henstock anticipating non-stochastic integral. We prove the integration-by-parts and integration-by-substitution results, the convergence theorems using our new setting. Using the convergence theorems, we show that the Kurzweil-Henstock's anticipating non-stochastic integral is equivalent to the Lebesgue integral. (English)
Keyword: Kurzweil-Henstock integral
Keyword: anticipative integral
Keyword: non-stochastic
MSC: 60H05
DOI: 10.21136/MB.2024.0028-24
.
Date available: 2025-09-26T14:22:08Z
Last updated: 2025-09-26
Stable URL: http://hdl.handle.net/10338.dmlcz/153082
.
Reference: [1] Bartle, R. G., Sherbert, D. R.: Introduction to Real Analysis.John Wiley & Sons, New York (1992). Zbl 0810.26001, MR 1135107
Reference: [2] Chew, T.-S., Huang, Z., Wang, C. S.: The non-uniform Riemann approach to anticipating stochastic integrals.Stochastic Anal. Appl. 22 (2004), 429-442. Zbl 1056.60062, MR 2037380, 10.1081/SAP-120028598
Reference: [3] Chew, T.-S., Tay, J.-Y., Toh, T.-L.: The non-uniform Riemann approach to Itô's integral.Real Anal. Exch. 27 (2002), 495-514. Zbl 1067.60025, MR 1922665, 10.14321/realanalexch.27.2.0495
Reference: [4] Lebesgue, H. L.: Leçons sur l'intégration et la recherche des fonctions primitives.Gauthier-Villars, Paris (1904), French \99999JFM99999 35.0377.01.
Reference: [5] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration.Series in Real Analysis 2. World Scientific, London (1989). Zbl 0699.26004, MR 1050957
Reference: [6] Lee, P. Y., Výborný, R.: The Integral: An Easy Approach After Kurzweil and Henstock.Australian Mathematical Society Lecture Series 14. Cambridge University Press, Cambridge (2000). Zbl 0941.26003, MR 1756319
Reference: [7] Lim, C. Y. Y., Toh, T. L.: A note on Henstock-Itô's non-stochastic integral.Real Anal. Exch. 47 (2022), 443-460. Zbl 07685114, MR 4551045, 10.14321/realanalexch.47.2.1637314733
Reference: [8] Riemann, B.: Collected Papers.Kendrick Press, Heber City (2004). Zbl 1101.01013, MR 2121437
Reference: [9] Toh, T.-L., Chew, T. S.: A variational approach to Itô's intgegral.Trends in Probability and Related Analysis World Scientific, Singapore (1999), 291-299. Zbl 0981.60054, MR 1819215
Reference: [10] Toh, T.-L., Chew, T.-S.: The Riemann approach to stochastic integration using non-uniform meshes.J. Math. Anal. Appl. 280 (2003), 133-147 \99999DOI99999 10.1016/S0022-247X(03)00059-3 . Zbl 1022.60055, MR 1972197, 10.1016/S0022-247X(03)00059-3
Reference: [11] Toh, T.-L., Chew, T.-S.: Henstock's multiple Wiener integral and Henstock's version of Hu-Meyer theorem.Math. Comput. Modelling 42 (2005), 139-149. Zbl 1084.60523, MR 2162393, 10.1016/j.mcm.2004.03.008
Reference: [12] Toh, T.-L., Chew, T.-S.: On belated differentiation and a characterisation of Henstock-Kurzweil-Itô integrable processes.Math. Bohem. 130 (2005), 63-72. Zbl 1112.26012, MR 2128359, 10.21136/MB.2005.134223
Reference: [13] Toh, T.-L., Chew, T.-S.: On Itô-Kurzweil-Henstock integral and integration-by-parts formula.Czech. Math. J. 55 (2005), 653-663. Zbl 1081.26005, MR 2153089, 10.1007/s10587-005-0052-7
Reference: [14] Toh, T. L., Chew, T. S.: Henstock's version of Itô's formula.Real Anal. Exch. 35 (2010), 375-389. Zbl 1221.26015, MR 2683604, 10.14321/realanalexch.35.2.0375
Reference: [15] Toh, T.-L., Chew, T.-S.: The Kurzweil-Henstock theory of stochastic integration.Czech. Math. J. 62 (2012), 829-848. Zbl 1265.26020, MR 2984637, 10.1007/s10587-012-0048-z
Reference: [16] Yang, H., Toh, T. L.: On Henstock method to Stratonovich integral with respect to continuous semimartingale.Int. J. Stoch. Anal. 2014 (2014), Article ID 534864, 7 pages. Zbl 1325.60082, MR 3293832, 10.1155/2014/534864
Reference: [17] Yang, H., Toh, T. L.: On Henstock-Kurzweil method to Stratonovich integral.Math. Bohem. 141 (2016), 129-142. Zbl 1389.26016, MR 3499780, 10.21136/MB.2016.11
.

Files

Files Size Format View
MathBohem_150-2025-3_5.pdf 281.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo