| Title:
|
A note on Kurzweil-Henstock's anticipating non-stochastic integral (English) |
| Author:
|
Ng, Yu Xin |
| Author:
|
Toh, Tin Lam |
| Language:
|
English |
| Journal:
|
Mathematica Bohemica |
| ISSN:
|
0862-7959 (print) |
| ISSN:
|
2464-7136 (online) |
| Volume:
|
150 |
| Issue:
|
3 |
| Year:
|
2025 |
| Pages:
|
371-392 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
Motivated by the study of anticipating stochastic integrals using Kurzweil-Henstock approach, we use anticipating interval-point pairs (with the tag as the right-end point of the interval) in studying non-stochastic integral, which we call the Kurzweil-Henstock anticipating non-stochastic integral. We prove the integration-by-parts and integration-by-substitution results, the convergence theorems using our new setting. Using the convergence theorems, we show that the Kurzweil-Henstock's anticipating non-stochastic integral is equivalent to the Lebesgue integral. (English) |
| Keyword:
|
Kurzweil-Henstock integral |
| Keyword:
|
anticipative integral |
| Keyword:
|
non-stochastic |
| MSC:
|
60H05 |
| DOI:
|
10.21136/MB.2024.0028-24 |
| . |
| Date available:
|
2025-09-26T14:22:08Z |
| Last updated:
|
2025-09-26 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/153082 |
| . |
| Reference:
|
[1] Bartle, R. G., Sherbert, D. R.: Introduction to Real Analysis.John Wiley & Sons, New York (1992). Zbl 0810.26001, MR 1135107 |
| Reference:
|
[2] Chew, T.-S., Huang, Z., Wang, C. S.: The non-uniform Riemann approach to anticipating stochastic integrals.Stochastic Anal. Appl. 22 (2004), 429-442. Zbl 1056.60062, MR 2037380, 10.1081/SAP-120028598 |
| Reference:
|
[3] Chew, T.-S., Tay, J.-Y., Toh, T.-L.: The non-uniform Riemann approach to Itô's integral.Real Anal. Exch. 27 (2002), 495-514. Zbl 1067.60025, MR 1922665, 10.14321/realanalexch.27.2.0495 |
| Reference:
|
[4] Lebesgue, H. L.: Leçons sur l'intégration et la recherche des fonctions primitives.Gauthier-Villars, Paris (1904), French \99999JFM99999 35.0377.01. |
| Reference:
|
[5] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration.Series in Real Analysis 2. World Scientific, London (1989). Zbl 0699.26004, MR 1050957 |
| Reference:
|
[6] Lee, P. Y., Výborný, R.: The Integral: An Easy Approach After Kurzweil and Henstock.Australian Mathematical Society Lecture Series 14. Cambridge University Press, Cambridge (2000). Zbl 0941.26003, MR 1756319 |
| Reference:
|
[7] Lim, C. Y. Y., Toh, T. L.: A note on Henstock-Itô's non-stochastic integral.Real Anal. Exch. 47 (2022), 443-460. Zbl 07685114, MR 4551045, 10.14321/realanalexch.47.2.1637314733 |
| Reference:
|
[8] Riemann, B.: Collected Papers.Kendrick Press, Heber City (2004). Zbl 1101.01013, MR 2121437 |
| Reference:
|
[9] Toh, T.-L., Chew, T. S.: A variational approach to Itô's intgegral.Trends in Probability and Related Analysis World Scientific, Singapore (1999), 291-299. Zbl 0981.60054, MR 1819215 |
| Reference:
|
[10] Toh, T.-L., Chew, T.-S.: The Riemann approach to stochastic integration using non-uniform meshes.J. Math. Anal. Appl. 280 (2003), 133-147 \99999DOI99999 10.1016/S0022-247X(03)00059-3 . Zbl 1022.60055, MR 1972197, 10.1016/S0022-247X(03)00059-3 |
| Reference:
|
[11] Toh, T.-L., Chew, T.-S.: Henstock's multiple Wiener integral and Henstock's version of Hu-Meyer theorem.Math. Comput. Modelling 42 (2005), 139-149. Zbl 1084.60523, MR 2162393, 10.1016/j.mcm.2004.03.008 |
| Reference:
|
[12] Toh, T.-L., Chew, T.-S.: On belated differentiation and a characterisation of Henstock-Kurzweil-Itô integrable processes.Math. Bohem. 130 (2005), 63-72. Zbl 1112.26012, MR 2128359, 10.21136/MB.2005.134223 |
| Reference:
|
[13] Toh, T.-L., Chew, T.-S.: On Itô-Kurzweil-Henstock integral and integration-by-parts formula.Czech. Math. J. 55 (2005), 653-663. Zbl 1081.26005, MR 2153089, 10.1007/s10587-005-0052-7 |
| Reference:
|
[14] Toh, T. L., Chew, T. S.: Henstock's version of Itô's formula.Real Anal. Exch. 35 (2010), 375-389. Zbl 1221.26015, MR 2683604, 10.14321/realanalexch.35.2.0375 |
| Reference:
|
[15] Toh, T.-L., Chew, T.-S.: The Kurzweil-Henstock theory of stochastic integration.Czech. Math. J. 62 (2012), 829-848. Zbl 1265.26020, MR 2984637, 10.1007/s10587-012-0048-z |
| Reference:
|
[16] Yang, H., Toh, T. L.: On Henstock method to Stratonovich integral with respect to continuous semimartingale.Int. J. Stoch. Anal. 2014 (2014), Article ID 534864, 7 pages. Zbl 1325.60082, MR 3293832, 10.1155/2014/534864 |
| Reference:
|
[17] Yang, H., Toh, T. L.: On Henstock-Kurzweil method to Stratonovich integral.Math. Bohem. 141 (2016), 129-142. Zbl 1389.26016, MR 3499780, 10.21136/MB.2016.11 |
| . |