Previous |  Up |  Next

Article

Title: On quasirecurrent manifolds (English)
Author: Kim, Jaeman
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 3
Year: 2025
Pages: 405-413
Summary lang: English
.
Category: math
.
Summary: We introduce a type of Riemannian manifolds (namely, quasirecurrent manifold) and study its several geometric properties. Among others, we prove that the scalar curvature of such a manifold is constant, and that the manifold is Einstein under certain condition. In addition, we deal with a quasirecurrent product manifold. Finally, we ensure the existence of quasirecurrent manifold by a proper example. (English)
Keyword: quasirecurrent manifold
Keyword: associated vector field
Keyword: constant scalar curvature
Keyword: Ricci symmetry
Keyword: Einstein
Keyword: cyclic Ricci symmetry
Keyword: conformally flat
Keyword: quasirecurrent product manifold
Keyword: space of constant curvature
MSC: 53A55
MSC: 53B20
DOI: 10.21136/MB.2024.0038-24
.
Date available: 2025-09-26T14:35:08Z
Last updated: 2025-09-26
Stable URL: http://hdl.handle.net/10338.dmlcz/153084
.
Reference: [1] Adati, T., Miyazawa, T.: On a Riemannian space with recurrent conformal curvature.Tensor, New Ser. 18 (1967), 348-354. Zbl 0152.39103, MR 0215251
Reference: [2] Besse, A. L.: Einstein Manifolds.Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Springer, Berlin (1987). Zbl 0613.53001, MR 0867684, 10.1007/978-3-540-74311-8
Reference: [3] Cartan, E.: Sur une classe remarquable d'espaces de Riemann. I.Bull. Soc. Math. Fr. 54 (1926), 214-264 French \99999JFM99999 52.0425.01. MR 1504900, 10.24033/bsmf.1105
Reference: [4] Kim, J.: A type of weakly symmetric structure on a Riemannian manifold.Korean J. Math. 30 (2022), 61-66. Zbl 1503.53029, MR 4411280, 10.11568/kjm.2022.30.1.61
Reference: [5] Pokhariyal, G. P.: Curvature tensors in a Lorentzian para Sasakian manifold.Quaest. Math. 19 (1996), 129-136. Zbl 0859.53032, MR 1390476, 10.1080/16073606.1996.9631829
Reference: [6] Pokhariyal, G. P., Mishra, R. S.: Curvature tensors and their relativistics significance.Yokohama Math. J. 18 (1970), 105-108. Zbl 0228.53022, MR 0292473
Reference: [7] Pokhariyal, G. P., Moindi, S. K., Nzimbi, B. M.: $W_2$-recurrent LP-Sasakian manifold.Univers. J. Math. Math. Sci. 3 (2013), 119-128. Zbl 1278.53034
Reference: [8] Ruse, H. S.: On simply harmonic spaces.J. Lond. Math. Soc. 21 (1946), 243-247. Zbl 0063.06626, MR 0021708, 10.1112/jlms/s1-21.4.243
Reference: [9] Ruse, H. S.: On simply harmonic "kappa spaces" of four dimensions.Proc. Lond. Math. Soc., II. Ser. 50 (1948), 317-329. Zbl 0030.37202, MR 0027170, 10.1112/plms/s2-50.4.317
Reference: [10] Ruse, H. S.: Three-dimensional spaces of recurrent curvature.Proc. Lond. Math. Soc., II. Ser. 50 (1948), 438-446. Zbl 0038.34303, MR 0029250, 10.1112/plms/s2-50.6.438
Reference: [11] Walker, A. G.: On Ruse's spaces of recurrent curvature.Proc. Lond. Math. Soc., II. Ser. 52 (1950), 36-64. Zbl 0039.17702, MR 0037574, 10.1112/plms/s2-52.1.36
.

Files

Files Size Format View
MathBohem_150-2025-3_7.pdf 181.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo