Previous |  Up |  Next

Article

Title: Nörlund means of the sequence of the iterates of a bounded linear operator, and spectral properties (English)
Author: Burlando, Laura
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 3
Year: 2025
Pages: 415-443
Summary lang: English
.
Category: math
.
Summary: We are concerned here with relating the spectral properties of a bounded linear operator $T$ on a Banach space to the behaviour of the means $(1/{s(n)})\sum _{k=0}^n(\Delta s)(n-k)T^k$, where $s$ is a nondecreasing sequence of positive real numbers, and $\Delta $ denotes the inverse of the automorphism on the vector space of scalar sequences which maps each sequence into the sequence of its partial sums. In a previous paper, we obtained a uniform ergodic theorem for the means above, under the hypotheses $\lim _{n\rightarrow \infty }s(n)=\infty$, $\lim _{n\rightarrow \infty }{s(n+1)}/{s(n)}=1$, and $\Delta ^qs\in \ell _1$ for a positive integer $q$: indeed, we proved that if $T^n/s(n)$ converges to zero in the uniform operator topology for such a sequence $s$, then the averages above converge in the same topology if and only if 1 is either in the resolvent set of $T$, or a simple pole of the resolvent function of $T$. In this paper, we prove that if $\liminf _{n\rightarrow \infty }{s(n+1)}/{s(n)}=1$, and the averages above converge in the uniform operator topology, then 1 is either in the resolvent set of $T$, or a simple pole of the resolvent function of $T$. The converse is not true, even if the sequence $s$ satisfies all the hypotheses of the theorem recalled above, except membership of $\Delta ^qs$ in $\ell _1$ for a positive integer $q$. We also prove that if $\lim _{n\rightarrow \infty }\root n\of {s(n)}=1$, and the function $h_s(z)=\sum _{n=0}^{\infty }s(n)z^n$ has no zeros in the open unit disk, then operator norm boundedness of the averages of the sequence $T^n$induced by $s$ implies that the spectral radius of $T$ is less than or equal to $1$. This result fails if the assumption about $h_s$ is dropped. Indeed, it may happen that the averages converge in the uniform operator topology for a sequence $s$ satisfying $\lim _ {n\rightarrow \infty }s(n)=\infty $, $\lim _{n\rightarrow \infty } {s(n+1)}/{s(n)}=1$, and $\Delta ^qs\in l_1$ for a positive integer $q$, and nevertheless the spectral radius of $T$ is strictly larger than 1. (English)
Keyword: bounded linear operator
Keyword: uniform ergodic theorem
Keyword: Nörlund means of operator iterates
Keyword: spectrum
Keyword: pole of the resolvent
MSC: 47A10
MSC: 47A35
DOI: 10.21136/MB.2024.0067-24
.
Date available: 2025-09-26T14:35:37Z
Last updated: 2025-09-26
Stable URL: http://hdl.handle.net/10338.dmlcz/153085
.
Reference: [1] Allan, G. R., Ransford, T. J.: Power-dominated elements in a Banach algebra.Stud. Math. 94 (1989), 63-79. Zbl 0705.46021, MR 1008239, 10.4064/sm-94-1-63-79
Reference: [2] Burlando, L.: A uniform ergodic theorem for some Nörlund means.Commun. Math. Anal. 21 (2018), 1-34. Zbl 07002173, MR 3866091
Reference: [3] Conway, J. B.: Functions of One Complex Variable.Graduate Texts in Mathematics 11. Springer, New York (1978). Zbl 0277.30001, MR 0503901, 10.1007/978-1-4612-6313-5
Reference: [4] Dunford, N.: Spectral theory. I. Convergence to projections.Trans. Am. Math. Soc. 54 (1943), 185-217. Zbl 0063.01185, MR 0008642, 10.1090/S0002-9947-1943-0008642-1
Reference: [5] Dunford, N.: Spectral theory.Bull. Am. Math. Soc. 49 (1943), 637-651. Zbl 0063.01184, MR 0008643, 10.1090/S0002-9904-1943-07965-7
Reference: [6] Ed-dari, E.: On the $(C,\alpha)$ uniform ergodic theorem.Stud. Math. 156 (2003), 3-13. Zbl 1052.47005, MR 1961058, 10.4064/sm156-1-1
Reference: [7] Halmos, P. R.: A Hilbert Space Problem Book.D. Van Nostrand, Princeton (1967). Zbl 0144.38704, MR 0208368
Reference: [8] Hille, E.: Remarks on ergodic theorems.Trans. Am. Math. Soc. 57 (1945), 246-269. Zbl 0063.02017, MR 0012212, 10.1090/S0002-9947-1945-0012212-0
Reference: [9] Hille, E., Phillips, R. S.: Functional Analysis and Semi-Groups.American Mathematical Society Colloquium Publications 31. AMS, Providence (1957). Zbl 0078.10004, MR 0089373, 10.1090/coll/031
Reference: [10] Laursen, K. B., Mbekhta, M.: Operators with finite chain length and the ergodic theorem.Proc. Am. Math. Soc. 123 (1995), 3443-3448. Zbl 0849.47008, MR 1277123, 10.1090/S0002-9939-1995-1277123-9
Reference: [11] Lin, M.: On the uniform ergodic theorem.Proc. Am. Math. Soc. 43 (1974), 337-340. Zbl 0252.47004, MR 0417821, 10.1090/S0002-9939-1974-0417821-6
Reference: [12] Lin, M., Shoikhet, D., Suciu, L.: Remarks on uniform ergodic theorems.Acta Sci. Math. 81 (2015), 251-283. Zbl 1363.47015, MR 3381884, 10.14232/actasm-012-307-4
Reference: [13] Mbekhta, M., Zemánek, J.: Sur le théorème ergodique uniforme et le spectre.C. R. Acad. Sci. Paris, Sér. I 317 (1993), 1155-1158 French. Zbl 0792.47006, MR 1257230
Reference: [14] Rudin, W.: Principles of Mathematical Analysis.McGraw-Hill, New York (1976). Zbl 0346.26002, MR 0385023
Reference: [15] Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis.John Wiley & Sons, New York (1980). Zbl 0501.46003, MR 0564653
Reference: [16] Yoshimoto, T.: Uniform and strong ergodic theorems in Banach spaces.Ill. J. Math. 42 (1998), 525-543. Zbl 0924.47005, MR 1648580, 10.1215/ijm/1255985459
Reference: [17] Zygmund, A.: Trigonometric Series Volumes I & II Combined.Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002). Zbl 1084.42003, MR 1963498, 10.1017/CBO9781316036587
.

Files

Files Size Format View
MathBohem_150-2025-3_8.pdf 356.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo