Previous |  Up |  Next

Article

Keywords:
bounded linear operator; uniform ergodic theorem; Nörlund means of operator iterates; spectrum; pole of the resolvent
Summary:
We are concerned here with relating the spectral properties of a bounded linear operator $T$ on a Banach space to the behaviour of the means $(1/{s(n)})\sum _{k=0}^n(\Delta s)(n-k)T^k$, where $s$ is a nondecreasing sequence of positive real numbers, and $\Delta $ denotes the inverse of the automorphism on the vector space of scalar sequences which maps each sequence into the sequence of its partial sums. In a previous paper, we obtained a uniform ergodic theorem for the means above, under the hypotheses $\lim _{n\rightarrow \infty }s(n)=\infty$, $\lim _{n\rightarrow \infty }{s(n+1)}/{s(n)}=1$, and $\Delta ^qs\in \ell _1$ for a positive integer $q$: indeed, we proved that if $T^n/s(n)$ converges to zero in the uniform operator topology for such a sequence $s$, then the averages above converge in the same topology if and only if 1 is either in the resolvent set of $T$, or a simple pole of the resolvent function of $T$. In this paper, we prove that if $\liminf _{n\rightarrow \infty }{s(n+1)}/{s(n)}=1$, and the averages above converge in the uniform operator topology, then 1 is either in the resolvent set of $T$, or a simple pole of the resolvent function of $T$. The converse is not true, even if the sequence $s$ satisfies all the hypotheses of the theorem recalled above, except membership of $\Delta ^qs$ in $\ell _1$ for a positive integer $q$. We also prove that if $\lim _{n\rightarrow \infty }\root n\of {s(n)}=1$, and the function $h_s(z)=\sum _{n=0}^{\infty }s(n)z^n$ has no zeros in the open unit disk, then operator norm boundedness of the averages of the sequence $T^n$induced by $s$ implies that the spectral radius of $T$ is less than or equal to $1$. This result fails if the assumption about $h_s$ is dropped. Indeed, it may happen that the averages converge in the uniform operator topology for a sequence $s$ satisfying $\lim _ {n\rightarrow \infty }s(n)=\infty $, $\lim _{n\rightarrow \infty } {s(n+1)}/{s(n)}=1$, and $\Delta ^qs\in l_1$ for a positive integer $q$, and nevertheless the spectral radius of $T$ is strictly larger than 1.
References:
[1] Allan, G. R., Ransford, T. J.: Power-dominated elements in a Banach algebra. Stud. Math. 94 (1989), 63-79. DOI 10.4064/sm-94-1-63-79 | MR 1008239 | Zbl 0705.46021
[2] Burlando, L.: A uniform ergodic theorem for some Nörlund means. Commun. Math. Anal. 21 (2018), 1-34. MR 3866091 | Zbl 07002173
[3] Conway, J. B.: Functions of One Complex Variable. Graduate Texts in Mathematics 11. Springer, New York (1978). DOI 10.1007/978-1-4612-6313-5 | MR 0503901 | Zbl 0277.30001
[4] Dunford, N.: Spectral theory. I. Convergence to projections. Trans. Am. Math. Soc. 54 (1943), 185-217. DOI 10.1090/S0002-9947-1943-0008642-1 | MR 0008642 | Zbl 0063.01185
[5] Dunford, N.: Spectral theory. Bull. Am. Math. Soc. 49 (1943), 637-651. DOI 10.1090/S0002-9904-1943-07965-7 | MR 0008643 | Zbl 0063.01184
[6] Ed-dari, E.: On the $(C,\alpha)$ uniform ergodic theorem. Stud. Math. 156 (2003), 3-13. DOI 10.4064/sm156-1-1 | MR 1961058 | Zbl 1052.47005
[7] Halmos, P. R.: A Hilbert Space Problem Book. D. Van Nostrand, Princeton (1967). MR 0208368 | Zbl 0144.38704
[8] Hille, E.: Remarks on ergodic theorems. Trans. Am. Math. Soc. 57 (1945), 246-269. DOI 10.1090/S0002-9947-1945-0012212-0 | MR 0012212 | Zbl 0063.02017
[9] Hille, E., Phillips, R. S.: Functional Analysis and Semi-Groups. American Mathematical Society Colloquium Publications 31. AMS, Providence (1957). DOI 10.1090/coll/031 | MR 0089373 | Zbl 0078.10004
[10] Laursen, K. B., Mbekhta, M.: Operators with finite chain length and the ergodic theorem. Proc. Am. Math. Soc. 123 (1995), 3443-3448. DOI 10.1090/S0002-9939-1995-1277123-9 | MR 1277123 | Zbl 0849.47008
[11] Lin, M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43 (1974), 337-340. DOI 10.1090/S0002-9939-1974-0417821-6 | MR 0417821 | Zbl 0252.47004
[12] Lin, M., Shoikhet, D., Suciu, L.: Remarks on uniform ergodic theorems. Acta Sci. Math. 81 (2015), 251-283. DOI 10.14232/actasm-012-307-4 | MR 3381884 | Zbl 1363.47015
[13] Mbekhta, M., Zemánek, J.: Sur le théorème ergodique uniforme et le spectre. C. R. Acad. Sci. Paris, Sér. I 317 (1993), 1155-1158 French. MR 1257230 | Zbl 0792.47006
[14] Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1976). MR 0385023 | Zbl 0346.26002
[15] Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis. John Wiley & Sons, New York (1980). MR 0564653 | Zbl 0501.46003
[16] Yoshimoto, T.: Uniform and strong ergodic theorems in Banach spaces. Ill. J. Math. 42 (1998), 525-543. DOI 10.1215/ijm/1255985459 | MR 1648580 | Zbl 0924.47005
[17] Zygmund, A.: Trigonometric Series Volumes I & II Combined. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002). DOI 10.1017/CBO9781316036587 | MR 1963498 | Zbl 1084.42003
Partner of
EuDML logo