[5] Ge, B., Najar, F., Bouguila, N.:
Data-weighted multivariate generalized Gaussian mixture model: Application to point cloud robust registration. J. Imaging 9 (2023), Article ID 179, 17 pages.
DOI 10.3390/jimaging9090179
[6] Ghojogh, B., Nekoei, H., Ghojogh, A., Karray, F., Crowley, M.:
Sampling algorithms, from survey sampling to Monte Carlo methods: Tutorial and literature review. Available at
https://arxiv.org/abs/2011.00901 (2020), 25 pages.
DOI 10.48550/arXiv.2011.00901
[7] Goel, K., Michael, N., Tabib, W.:
Probabilistic point cloud modeling via self-organizing Gaussian mixture models. IEEE Robotics Automat. Lett. 8 (2023), 2526-2533.
DOI 10.1109/LRA.2023.3256923
[8] Harsha, K. V., Moosath, K. S. S.:
$F$-geometry and Amari's $\alpha$-geometry on a statistical manifold. Entropy 16 (2014), 2472-2487.
DOI 10.3390/e16052472
[10] Hirose, O.:
Geodesic-based Bayesian coherent point drift. IEEE Trans. Pattern Anal. Machine Intelligence 45 (2023), 5816-5832.
DOI 10.1109/TPAMI.2022.3214191
[12] Jannah, W., Saputro, D. R. S.:
Parameter estimation of Gaussian mixture models (GMM) with expectation maximization (EM) algorithm. AIP Conf. Proc. 2566 (2022), Article ID 04002.
DOI 10.1063/5.0117119
[14] Lee, Y., Kim, S., Choi, J., Park, F.: A statistical manifold framework for point cloud data. Proceedings of the 39th International Conference on Machine Learning PMLR, Cambridge (2022), 12378-12402.
[16] Li, R., Li, X., Fu, C.-W., Cohen-Or, D., Heng, P.-A.:
PU-GAN: A point cloud upsampling adversarial network. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) IEEE, Los Alamitos (2019), 7203-7212.
DOI 10.1109/ICCV.2019.00730
[17] Li, Y., Xie, S., Wan, Z., Lv, H., Song, H., Lv, Z.:
Graph-powered learning methods in the internet of things: A survey. Machine Learning Appl. 11 (2023), Article ID 100441, 15 pages.
DOI 10.1016/j.mlwa.2022.100441
[21] Moenning, C., Dodgson, N. A.: Fast Marching Farthest Point Sampling. Technical Report 562. University of Cambridge, Computer Laboratory, Cambridge (2003).
[23] Nielsen, F.:
An elementary introduction to information geometry. Entropy 22 (2020), Article ID 1100, 61 pages.
DOI 10.3390/e22101100
[27] Saranti, A., Pfeifer, B., Gollob, C., Stampfer, K., Holzinger, A.:
From 3D point-cloud data to explainable geometric deep learning: State-of-the-art and future challenges. WIREs Data Mining Knowledge Disc. 14 (2024), Article ID e1554, 45 pages.
DOI 10.1002/widm.1554
[28] Stern, R. M.:
Short-time Fourier analysis. Advanced Digital Signal Processing Course Notes Carnegie Mellon University, Pittsburgh (2022), 35-52 Available at \let \relax \brokenlink{
http:{//course.ece.cmu.edu/ ece491/lectures/L25/STFT_Notes_ADSP.pdf}}.
[30] Wang, R., Law, A. C., Garcia, D., Yang, S., Kong, Z.:
Development of structured light 3D-scanner with high spatial resolution and its applications for additive manufacturing quality assurance. Int. J. Adv. Manufac. Technol. 117 (2021), 845-862.
DOI 10.1007/s00170-021-07780-2
[31] Yang, Y., Feng, C., Shen, Y., Tian, D.:
FoldingNet: Point cloud auto-encoder via deep grid deformation. IEEE/CVF Conference on Computer Vision and Pattern Recognition 2018 IEEE, Los Alamitos (2018), 206-215.
DOI 10.1109/CVPR.2018.00029