Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
beam equation; jumping nonlinearity; travelling wave; one-troughed solution
Summary:
We study the boundary value problem for nonlinear fourth-order partial differential equation with jumping nonlinearity which can serve, e.g., as a model of an asymmetrically supported bending beam. We focus on a special type of solutions, the so-called one-troughed travelling waves. The main goal of this paper is to show the existence of at least two different one-troughed travelling waves for particular wave speeds and input parameters of the studied problem. We present the upper bounds for the maximal number of one-troughed solutions together with a visualisation of obtained results and corresponding solutions. Finally, we list several open questions regarding this topic.
References:
[1] Amann, O. H., Kármán, T. von, Woodruff, G. B.: The Failure of the Tacoma Narrows Bridge. Federal Works Agency, Washington (1941).
[2] Breuer, B., Horák, J., McKenna, P. J., Plum, M.: A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam. J. Differ. Equations 224 (2006), 60-97. DOI 10.1016/j.jde.2005.07.016 | MR 2220064 | Zbl 1104.34034
[3] Camacho, J. C., Bruzón, M. S., Ramírez, J., Gandarias, M. L.: Exact travelling wave solutions of a beam equation. J. Nonlinear Math. Phys. 18 (2011), 33-49. DOI 10.1142/S140292511100126X | MR 2827487 | Zbl 1362.35298
[4] Champneys, A. R., McKenna, P. J.: On solitary waves of a piecewise linear suspended beam model. Nonlinearity 10 (1997), 1763-1782. DOI 10.1088/0951-7715/10/6/018 | MR 1483565 | Zbl 0903.73031
[5] Champneys, A. R., McKenna, P. J., Zegeling, P. A.: Solitary waves in nonlinear beam equations: Stability, fission and fusion. Nonlinear Dyn. 21 (2000), 31-53. DOI 10.1023/A:1008302207311 | MR 1758951 | Zbl 0974.74034
[6] Chen, Y.: Traveling wave solutions to beam equation with fast-increasing nonlinear restoring forces. Appl. Math., Ser. B (Engl. Ed.) 15 (2000), 151-160. DOI 10.1007/s11766-000-0021-8 | MR 1760229 | Zbl 0969.35097
[7] Chen, Y., McKenna, P. J.: Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations. J. Differ. Equations 136 (1997), 325-355. DOI 10.1006/jdeq.1996.3155 | MR 1448828 | Zbl 0879.35113
[8] Chen, Y., McKenna, P. J.: Travelling waves in a nonlinearly suspended beam: Some computational results and four open questions. Philos. Trans. R. Soc. Lond., Ser. A 355 (1997), 2175-2184. DOI 10.1098/rsta.1997.0116 | MR 1484142 | Zbl 0895.35100
[9] Diaferio, M., Sepe, V.: Smoothed ``slack cable'' models for large amplitude oscillations of suspension bridges. Mech. Based Design Struct. Machines 32 (2004), 363-400. DOI 10.1081/SME-200028000
[10] Levá, H. Formánková, Holubová, G., Nečesal, P.: Lower bounds for admissible values of the travelling wave speed in asymmetrically supported beam. Accepted for publication in Topol. Methods Nonlinear Anal. Available at https://arxiv.org/abs/2412.07500 2024 27 pages. DOI 10.48550/arXiv.2412.07500
[11] Holubová, G., Levá, H.: Travelling wave solutions of the beam equation with jumping nonlinearity. J. Math. Anal. Appl. 527 (2023) Article ID 127466, 15 pages. DOI 10.1016/j.jmaa.2023.127466 | MR 4601072 | Zbl 1525.34068
[12] Karageorgis, P., Stalker, J.: A lower bound for the amplitude of traveling waves of suspension bridges. Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 5212-5214. DOI 10.1016/j.na.2012.04.037 | MR 2927583 | Zbl 1266.34078
[13] Lazer, A. C., McKenna, P. J.: Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis. SIAM Rev. 32 (1990), 537-578. DOI 10.1137/103212 | MR 1084570 | Zbl 0725.73057
[14] Lazer, A. C., McKenna, P. J.: On travelling waves in a suspension bridge model as the wave speed goes to zero. Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 3998-4001. DOI 10.1016/j.na.2011.03.024 | MR 2802982 | Zbl 1228.34065
[15] Levandosky, S.: Stability and instability of fourth-order solitary waves. J. Dyn. Differ. Equations 10 (1998), 151-188. DOI 10.1023/A:1022644629950 | MR 1607537 | Zbl 0893.35079
[16] Li, T., Sun, J., Wu, T.: Existence of homoclinic solutions for a fourth order differential equation with a parameter. Appl. Math. Comput. 251 (2015), 499-506. DOI 10.1016/j.amc.2014.11.056 | MR 3294736 | Zbl 1328.34038
[17] McKenna, P. J., Walter, W.: Travelling waves in a suspension bridge. SIAM J. Appl. Math. 50 (1990), 703-715. DOI 10.1137/0150041 | MR 1050908 | Zbl 0699.73038
[18] Smets, D., Berg, J. B. van den: Homoclinic solutions for Swift-Hohenberg and suspension brigde type equations. J. Differ. Equations 184 (2002), 78-96. DOI 10.1006/jdeq.2001.4135 | MR 1929147 | Zbl 1029.34036
Partner of
EuDML logo