Previous |  Up |  Next

Article

Title: The CR geometry of the three-segment snake (English)
Author: Frelik, Tymon
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 61
Issue: 3
Year: 2025
Pages: 93-99
Summary lang: English
.
Category: math
.
Summary: We study the geometry associated with the kinematics of a planar robot known as the three-segment snake, whose velocity distribution belongs to a class of $(2,3,5)$ distributions. We discover that, under certain assumptions on its construction parameters, the snake may be endowed with a CR structure of CR dimension 1 and real codimension 3. We solve the associated Cartan equivalence problem and find the invariants of the snake’s CR structure. (English)
Keyword: snake robot
Keyword: CR structure
Keyword: Cartan equivalence method
MSC: 32V05
MSC: 53A17
MSC: 53A55
MSC: 58A15
DOI: 10.5817/AM2025-3-93
.
Date available: 2025-11-07T11:56:50Z
Last updated: 2025-11-14
Stable URL: http://hdl.handle.net/10338.dmlcz/153130
.
Reference: [1] Agrachev, A., Nurowski, P.: Ants and bracket generating distributions in dimension 5 and 6.Automatica 147 (2023), 10pp. DOI: http://dx.doi.org/10.1016/j.automatica.2022.110693 10.1016/j.automatica.2022.110693
Reference: [2] Agrachev, A.A., Sachkov, Y.L.: Control theory from the geometric viewpoint.Encyclopaedia of Mathematical Sciences, vol. 87, Springer-Verlag, Berlin, 2004, Control Theory and Optimization, II. MR 2062547 DOI: http://dx.doi.org/10.1007/978-3-662-06404-7 10.1007/978-3-662-06404-7
Reference: [3] Čap, A., Slovák, J.: Parabolic geometries I. Background and general theory.Math. Surveys Monogr., vol. 154, Amer. Math. Soc., Providence, RI, 2009. 10.1090/surv/154
Reference: [4] Cartan, É.: Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du seconde ordre.Ann. Sc. Norm. Super. 27 (1910), 109–192.
Reference: [5] Doležal, M.: Lie algebra structure in the model of 3-link snake robot.Arch. Math. (Brno) 60 (4) (2024), 221–229. 10.5817/AM2024-4-221
Reference: [6] Hill, C.D., Nurowski, P.: A car as parabolic geometry.Geometry, Lie theory and applications—the Abel Symposium 2019, Abel Symp., vol. 16, Springer, 2022, pp. 93–130. DOI: http://dx.doi.org/10.1007/978-3-030-81296-6_6 10.1007/978-3-030-81296-6_6
Reference: [7] Ishikawa, M.: Iterative feedback control of snake-like robot based on principal fibre bundle modelling.Int. J. of Adv. Mech. Sys. 1 (2009), 175–182. DOI: http://dx.doi.org/10.1504/IJAMECHS.2009.023200 10.1504/IJAMECHS.2009.023200
Reference: [8] Jean, F.: The car with $n$ trailers: characterisation of the singular configurations.ESAIM Controle Optim. Calc. Var. 1 (1995/96), 241–266. 10.1051/cocv:1996108
Reference: [9] Merker, J., Pocchiola, S., Sabzevari, M.: Canonical Cartan Connections on Maximally Minimal Generic Submanifolds $M^5\subset \mathbb{C}^4$.Electron. Res. Ann. Math. Sci. (ERA-MS) 21 (2014), 16pp.
Reference: [10] Merker, J., Sabzevari, M.: Cartan Equivalence Problem for 5-Dimensional Bracket-Generating CR Manifolds in $\mathbb{C}^4$.J. Geom. Anal. 26 (4) (2015), 3194–3251. DOI: http://dx.doi.org/10.1007/s12220-015-9667-6 10.1007/s12220-015-9667-6
Reference: [11] Nurowski, P.: Differential equations and conformal structures.J. Geom. Phys. 55 (1) (2005), 19–49. DOI: http://dx.doi.org/10.1016/j.geomphys.2004.11.006 Zbl 1082.53024, 10.1016/j.geomphys.2004.11.006
Reference: [12] Nurowski, P.: Hunting for a $G_2$ snake.International Meeting on Lorentzian and Conformal Geometry, Alfried Krupp Wissenschaftskolleg Greifswald, March 18 2014, https://www.fuw.edu.pl/~nurowski/prace/hunting.pdf.
.

Files

Files Size Format View
ArchMathRetro_061-2025-3_1.pdf 484.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo