Previous |  Up |  Next

Article

Keywords:
snake robot; CR structure; Cartan equivalence method
Summary:
We study the geometry associated with the kinematics of a planar robot known as the three-segment snake, whose velocity distribution belongs to a class of $(2,3,5)$ distributions. We discover that, under certain assumptions on its construction parameters, the snake may be endowed with a CR structure of CR dimension 1 and real codimension 3. We solve the associated Cartan equivalence problem and find the invariants of the snake’s CR structure.
References:
[1] Agrachev, A., Nurowski, P.: Ants and bracket generating distributions in dimension 5 and 6. Automatica 147 (2023), 10pp. DOI:  http://dx.doi.org/10.1016/j.automatica.2022.110693 DOI 10.1016/j.automatica.2022.110693
[2] Agrachev, A.A., Sachkov, Y.L.: Control theory from the geometric viewpoint. Encyclopaedia of Mathematical Sciences, vol. 87, Springer-Verlag, Berlin, 2004, Control Theory and Optimization, II. MR 2062547 DOI:  http://dx.doi.org/10.1007/978-3-662-06404-7 DOI 10.1007/978-3-662-06404-7
[3] Čap, A., Slovák, J.: Parabolic geometries I. Background and general theory. Math. Surveys Monogr., vol. 154, Amer. Math. Soc., Providence, RI, 2009. DOI 10.1090/surv/154
[4] Cartan, É.: Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du seconde ordre. Ann. Sc. Norm. Super. 27 (1910), 109–192.
[5] Doležal, M.: Lie algebra structure in the model of 3-link snake robot. Arch. Math. (Brno) 60 (4) (2024), 221–229. DOI 10.5817/AM2024-4-221
[6] Hill, C.D., Nurowski, P.: A car as parabolic geometry. Geometry, Lie theory and applications—the Abel Symposium 2019, Abel Symp., vol. 16, Springer, 2022, pp. 93–130. DOI:  http://dx.doi.org/10.1007/978-3-030-81296-6_6 DOI 10.1007/978-3-030-81296-6_6
[7] Ishikawa, M.: Iterative feedback control of snake-like robot based on principal fibre bundle modelling. Int. J. of Adv. Mech. Sys. 1 (2009), 175–182. DOI:  http://dx.doi.org/10.1504/IJAMECHS.2009.023200 DOI 10.1504/IJAMECHS.2009.023200
[8] Jean, F.: The car with $n$ trailers: characterisation of the singular configurations. ESAIM Controle Optim. Calc. Var. 1 (1995/96), 241–266. DOI 10.1051/cocv:1996108
[9] Merker, J., Pocchiola, S., Sabzevari, M.: Canonical Cartan Connections on Maximally Minimal Generic Submanifolds $M^5\subset \mathbb{C}^4$. Electron. Res. Ann. Math. Sci. (ERA-MS) 21 (2014), 16pp.
[10] Merker, J., Sabzevari, M.: Cartan Equivalence Problem for 5-Dimensional Bracket-Generating CR Manifolds in $\mathbb{C}^4$. J. Geom. Anal. 26 (4) (2015), 3194–3251. DOI:  http://dx.doi.org/10.1007/s12220-015-9667-6 DOI 10.1007/s12220-015-9667-6
[11] Nurowski, P.: Differential equations and conformal structures. J. Geom. Phys. 55 (1) (2005), 19–49. DOI:  http://dx.doi.org/10.1016/j.geomphys.2004.11.006 DOI 10.1016/j.geomphys.2004.11.006 | Zbl 1082.53024
[12] Nurowski, P.: Hunting for a $G_2$ snake. International Meeting on Lorentzian and Conformal Geometry, Alfried Krupp Wissenschaftskolleg Greifswald, March 18 2014, https://www.fuw.edu.pl/~nurowski/prace/hunting.pdf
Partner of
EuDML logo