Previous |  Up |  Next

Article

Title: A generalised Ricci-Hessian equation on Riemannian manifolds (English)
Author: Ginoux, Nicolas
Author: Habib, Georges
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 61
Issue: 3
Year: 2025
Pages: 101-132
Summary lang: English
.
Category: math
.
Summary: In this paper, we prove new rigidity results related to some generalised Ricci-Hessian equation on Riemannian manifolds. (English)
Keyword: Obata equation
Keyword: Tashiro equation
Keyword: virtual Einstein equation
MSC: 53C20
MSC: 58J60
DOI: 10.5817/AM2025-3-101
.
Date available: 2025-11-07T13:09:52Z
Last updated: 2025-11-14
Stable URL: http://hdl.handle.net/10338.dmlcz/153132
.
Reference: [1] Alekseevskiĭ, D.V., Kimelfeld, B.N.: Structure of homogeneous Riemannian spaces with zero Ricci curvature.Funktsional. Anal. i Prilozhen. 9 (2) (1975), 5–11. 10.1007/BF01075445
Reference: [2] Besse, A.L.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete ed., vol. 3 (10), Springer, 1987. Zbl 0613.53001
Reference: [3] Bishop, R.L., O’Neill, B.: Manifolds of negative curvature.Trans. Amer. Math. Soc. 145 (1969), 1–49. 10.1090/S0002-9947-1969-0251664-4
Reference: [4] Case, J.: The non-existence of quasi-Einstein metrics.Pacific J. Math. 248 (2) (2010), 277–284. 10.2140/pjm.2010.248.277
Reference: [5] Case, J., Shu, Y.-J., Wei, G.: Rigidity of quasi-Einstein metrics.Differential Geom. Appl. 29 (2011), 93–100. 10.1016/j.difgeo.2010.11.003
Reference: [6] Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations.Comm. Math. Phys. 214 (1) (2000), 137–189. 10.1007/PL00005533
Reference: [7] Feitosa, F.E.S., Freitas Filho, A.A., Gomes, J.N.V., Pina, R.S.: Gradient almost Ricci soliton warped product.J. Geom. Phys. 143 (2019), 22–32. 10.1016/j.geomphys.2019.05.003
Reference: [8] Ginoux, N., Habib, G., Kath, I.: A splitting theorem for Riemannian manifolds of generalised Ricci-Hessian type.hal-01877391, arXiv:1809.07546 (2018).
Reference: [9] Ginoux, N., Habib, G., Kath, I.: Skew Killing spinors in four dimensions.Ann. Global Anal. Geom. 59 (4) (2021), 501–535. 10.1007/s10455-021-09754-9
Reference: [10] Güler, S., Demirbağ, S.A.: On warped product manifolds satisfying Ricci-Hessian class type equations.Publ. Inst. Math. (Beograd) (N.S.) 103 (117) (2018), 69–75. 10.2298/PIM1817069G
Reference: [11] He, C., Petersen, P., Wylie, W.: Warped product Einstein metrics over spaces with constant scalar curvature.Asian J. Math. 18 (1) (2014), 159–189. 10.4310/AJM.2014.v18.n1.a9
Reference: [12] He, C., Petersen, P., Wylie, W.: Uniqueness of warped product Einstein metrics and applications.J. Geom. Anal. 25 (4) (2015), 2617–2644. 10.1007/s12220-014-9528-8
Reference: [13] He, C., Petersen, P., Wylie, W.: Warped product Einstein metrics on homogeneous spaces and homogeneous Ricci solitons.J. Reine Angew. Math. 707 (2015), 217–245. 10.1515/crelle-2013-0078
Reference: [14] He, C., Petersen, P., Wylie, W.: Warped product rigidity.Asian J. Math. 19 (1) (2015), 135–170. 10.4310/AJM.2015.v19.n1.a6
Reference: [15] Kanai, M.: On a differential equation characterizing a Riemannian structure of a manifold.Tokyo J. Math. 6 (1) (1983), 143–151. 10.3836/tjm/1270214332
Reference: [16] Karp, L.: Subharmonic functions, harmonic mappings and isometric immersions.Seminar on Differential Geometry, Ann. of Math. Stud 102 (1982), 133–142.
Reference: [17] Karp, L.: Subharmonic functions on real and complex manifolds.Math. Z. 179 (4) (1982), 535–554. 10.1007/BF01215065
Reference: [18] Kim, D.-S., Kim, Y.H.: Compact Einstein warped product spaces with nonpositive scalar curvature.Proc. Amer. Math. Soc. 131 (8) (2003), 2573–2576. 10.1090/S0002-9939-03-06878-3
Reference: [19] Kühnel, W., Rademacher, H.-B.: Conformally Einstein product spaces.Differential Geom. Appl. 49 (2016), 65–96. 10.1016/j.difgeo.2016.07.005
Reference: [20] Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere.J. Math. Soc. Japan 14 (1962), 333–340. 10.2969/jmsj/01430333
Reference: [21] Petersen, P., Wylie, W.: Rigidity of homogeneous gradient soliton metrics and related equations.Differential Geom. Appl. 84 (2022), no. 101929, 29. 10.1016/j.difgeo.2022.101929
Reference: [22] Ranjan, A., Santhanam, G.: A generalization of Obata’s theorem.J. Geom. Anal. 7 (3) (1997), 357–375. 10.1007/BF02921625
Reference: [23] Tashiro, Y.: Complete Riemannian manifolds and some vector fields.Trans. Amer. Math. Soc. 117 (1965), 251–275. 10.1090/S0002-9947-1965-0174022-6
Reference: [24] Yau, S.T.: Harmonic functions on complete Riemannian manifolds.Comm. Pure Appl. Math. 28 (1975), 201–228. 10.1002/cpa.3160280203
.

Files

Files Size Format View
ArchMathRetro_061-2025-3_2.pdf 638.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo