[1] Alekseevskiĭ, D.V., Kimelfeld, B.N.:
Structure of homogeneous Riemannian spaces with zero Ricci curvature. Funktsional. Anal. i Prilozhen. 9 (2) (1975), 5–11.
DOI 10.1007/BF01075445
[2] Besse, A.L.:
Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete ed., vol. 3 (10), Springer, 1987.
Zbl 0613.53001
[6] Corvino, J.:
Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Comm. Math. Phys. 214 (1) (2000), 137–189.
DOI 10.1007/PL00005533
[7] Feitosa, F.E.S., Freitas Filho, A.A., Gomes, J.N.V., Pina, R.S.:
Gradient almost Ricci soliton warped product. J. Geom. Phys. 143 (2019), 22–32.
DOI 10.1016/j.geomphys.2019.05.003
[8] Ginoux, N., Habib, G., Kath, I.: A splitting theorem for Riemannian manifolds of generalised Ricci-Hessian type. hal-01877391, arXiv:1809.07546 (2018).
[9] Ginoux, N., Habib, G., Kath, I.:
Skew Killing spinors in four dimensions. Ann. Global Anal. Geom. 59 (4) (2021), 501–535.
DOI 10.1007/s10455-021-09754-9
[10] Güler, S., Demirbağ, S.A.:
On warped product manifolds satisfying Ricci-Hessian class type equations. Publ. Inst. Math. (Beograd) (N.S.) 103 (117) (2018), 69–75.
DOI 10.2298/PIM1817069G
[11] He, C., Petersen, P., Wylie, W.:
Warped product Einstein metrics over spaces with constant scalar curvature. Asian J. Math. 18 (1) (2014), 159–189.
DOI 10.4310/AJM.2014.v18.n1.a9
[12] He, C., Petersen, P., Wylie, W.:
Uniqueness of warped product Einstein metrics and applications. J. Geom. Anal. 25 (4) (2015), 2617–2644.
DOI 10.1007/s12220-014-9528-8
[13] He, C., Petersen, P., Wylie, W.:
Warped product Einstein metrics on homogeneous spaces and homogeneous Ricci solitons. J. Reine Angew. Math. 707 (2015), 217–245.
DOI 10.1515/crelle-2013-0078
[15] Kanai, M.:
On a differential equation characterizing a Riemannian structure of a manifold. Tokyo J. Math. 6 (1) (1983), 143–151.
DOI 10.3836/tjm/1270214332
[16] Karp, L.: Subharmonic functions, harmonic mappings and isometric immersions. Seminar on Differential Geometry, Ann. of Math. Stud 102 (1982), 133–142.
[17] Karp, L.:
Subharmonic functions on real and complex manifolds. Math. Z. 179 (4) (1982), 535–554.
DOI 10.1007/BF01215065
[18] Kim, D.-S., Kim, Y.H.:
Compact Einstein warped product spaces with nonpositive scalar curvature. Proc. Amer. Math. Soc. 131 (8) (2003), 2573–2576.
DOI 10.1090/S0002-9939-03-06878-3
[20] Obata, M.:
Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14 (1962), 333–340.
DOI 10.2969/jmsj/01430333
[21] Petersen, P., Wylie, W.:
Rigidity of homogeneous gradient soliton metrics and related equations. Differential Geom. Appl. 84 (2022), no. 101929, 29.
DOI 10.1016/j.difgeo.2022.101929
[22] Ranjan, A., Santhanam, G.:
A generalization of Obata’s theorem. J. Geom. Anal. 7 (3) (1997), 357–375.
DOI 10.1007/BF02921625
[24] Yau, S.T.:
Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28 (1975), 201–228.
DOI 10.1002/cpa.3160280203