Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
degenerate elliptic equation; singular gradient lower order term; existence and regularity; Harnack inequality; $L^{m}$-data
Summary:
We present a comprehensive analysis of the existence and regularity of distributional solutions for a given class of nonlinear degenerate elliptic equations. The equations under consideration contain singular gradient lower order terms and are related to the $L^{m}$ data, where the exponent $m$ satisfies $1<m<{d}/{p^{-}}$. To deal with this problem, we use a functional framework that includes Lebesgue--Sobolev spaces with variable exponents. Our findings provide valuable additions to the previous research discussed in Nonlinear degenerate $p(x)$-Laplacian equation with singular gradient and lower order term (2023) by H. Khelifi and M. A. Zouatini.
References:
[1] Alvino A., Boccardo L., Ferone V., Orsina L., Trombetti G.: Existence results for nonlinear elliptic equations with degenerate coercivity. Ann. Mat. Pura Appl. (4) 182 (2003), no. 1, 53–79. DOI 10.1007/s10231-002-0056-y
[2] Bensoussan A., Boccardo L., Murat F.: On a nonlinear partial differential equation having natural growth terms and unbounded solutions. Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), no. 4, 347–364. DOI 10.1016/s0294-1449(16)30342-0
[3] Boccardo L.: Quasilinear elliptic equations with natural growth terms: the regularizing effects of lower order terms. J. Nonlinear Convex Anal. 7 (2006), no. 3, 355–365.
[4] Boccardo L.: Dirichlet problems with singular and gradient quadratic lower order terms. ESAIM Control Optim. Calc. Var. 14 (2008), no. 3, 411–426. DOI 10.1051/cocv:2008031
[5] Boccardo L., Dall'Aglio A., Orsina L.: Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Sem. Mat. Fis. Univ. Modena 46 (1998), suppl., 51–81.
[6] Croce G.: The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity. Rend. Mat. Appl. (7) 27 (2007), no. 3–4, 299–314.
[7] Croce G.: An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete Contin. Dyn. Syst. Ser. S 5 (2012), no. 3, 507–530.
[8] Diening L., Harjulehto T., Hästö P., Růžička M.: Lebesque and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011.
[9] Fan X., Zhao D.: On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$. J. Math. Anal. Appl. 263 (2001), no. 2, 424–446.
[10] Khelifi H.: Existence and regularity for solution to a degenerate problem with singular gradient lower order term. Moroccan Journal of Pure and Applied Analysis 8 (2022), no. 3, 310–327. DOI 10.2478/mjpaa-2022-0022
[11] Khelifi H.: Anisotropic degenerate elliptic problem with singular gradient lower order term. Boll. Unione Mat. Ital. 17 (2024), no. 1, 149–174. DOI 10.1007/s40574-023-00395-3 | MR 4703444
[12] Khelifi H.: Existence and regularity for a degenerate problem with singular gradient lower order term. Mem. Differ. Equ. Math. Phys. 91 (2024), 51–66.
[13] Khelifi H., El Hadfi Y., Addoun R. I.: Nonlinear degenerate $p$-Laplacian elliptic equations with singular gradient lower order term. Poincare J. Anal. Appl. 10 (2023), no. 1, 87–104. DOI 10.46753/pjaa.2023.v010i01.007
[14] Khelifi H., Zouatini M. A.: Nonlinear degenerate $p(x)$-Laplacian equation with singular gradient and lower order term. Indian. J. Pure. Appl. Math. 56 (2025), no. 1, 46–66. DOI 10.1007/s13226-023-00460-9
[15] Souilah R.: Existence and regularity results for some elliptic equations with degenerate coercivity and singular quadratic lower-order terms. Mediterr. J. Math. 16 (2019), no. 4, Paper No. 87, 21 pages. DOI 10.1007/s00009-019-1360-8
[16] Zhan C., Martínez-Aparicio P. J.: Entropy solutions for nonlinear elliptic equations with variable exponents. C. Elect. J. Differ. Equ. 92 (2014), 1–14.
[17] Zouatini M. A., Khelifi H., Mokhtari F.: Anisotropic degenerate elliptic problem with a singular nonlinearity. Adv. Oper. Theory 8 (2023), no. 1, Paper No. 13, 24 pages. DOI 10.1007/s43036-022-00240-y
[18] Zouatini M. A., Mokhtari F., Khelifi H.: Degenerate elliptic problem with singular gradient lower order term and variable exponents. Mathematical Modeling and Computing 10 (2023), no. 1, 133–146. DOI 10.23939/mmc2023.01.133
Partner of
EuDML logo