Previous |  Up |  Next

Article

Title: Vertex transitive graphs obtained by generalizing a left loop construction of the Hoffman-Singleton graph (English)
Author: Chishwashwa, Nyumbu
Author: Mwambene, Eric C.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 65
Issue: 2
Year: 2024
Pages: 203-213
Summary lang: English
.
Category: math
.
Summary: We construct a family of vertex transitive graphs on a left loop structure of order $2q^2$ where $q$ is a power of a prime such that $q\equiv 1 \bmod 4$. The graphs are of diameter 2. The smallest of these graphs is isomorphic to the Hoffman--Singleton graph. (English)
Keyword: left loop
Keyword: quasi-associative
Keyword: Cayley graph
Keyword: Hoffman--Singleton graph
Keyword: vertex transitive
MSC: 05C25
MSC: 05C60
MSC: 05C62
MSC: 05E18
DOI: 10.14712/1213-7243.2025.009
.
Date available: 2025-11-12T14:41:36Z
Last updated: 2025-11-14
Stable URL: http://hdl.handle.net/10338.dmlcz/153169
.
Reference: [1] Baez K.: Towards a geometric theory for left loops.Comment. Math. Univ. Carolin. 55 (2014), no. 3, 315–323.
Reference: [2] Gauyacq G.: On quasi-Cayley graphs.Discrete Appl. Math. 77 (1997), no. 1, 43–58. 10.1016/S0166-218X(97)00098-X
Reference: [3] Godsil C., Royle G.: Algebraic Graph Theory.Graduate Texts in Mathematics, 207, Springer, New York, 2001.
Reference: [4] Hafner P. R.: The Hoffman–Singleton graph and its automorphisms.J. Algebraic Combin. 18 (2003), no. 1, 7–12. 10.1023/A:1025136524481
Reference: [5] Hoffman A. J., Singleton R. R.: On Moore graphs with diameters $2$ and $3$.IBM J. Res. Develop. 4 (1960), 497–504. 10.1147/rd.45.0497
Reference: [6] James L. O.: A combinatorial proof that the Moore $(7,2)$ graph is unique.Utilitas Math. 5 (1974), 79–84.
Reference: [7] Mwambene E.: Characterisation of regular graphs as loop graphs.Quaest. Math. 28 (2005), no. 2, 243–250. 10.2989/16073600509486125
Reference: [8] Mwambene E.: Representing vertex-transitive graphs on groupoids.Quaest. Math. 29 (2006), no. 3, 279–284. Zbl 1107.05080, 10.2989/16073600609486163
Reference: [9] Robertson G. N.: Graphs Minimal under Girth, Valency and Connectivity Constraints.PhD Thesis, University of Waterloo, Ontario, 1969.
Reference: [10] Sabidussi G.: Vertex-transitive graphs.Monatsh. Math. 68 (1964), 426–438. Zbl 0136.44608, 10.1007/BF01304186
Reference: [11] : Magma Computational Algebra System.Computational Algebra Group, School of Mathematics and Statistics, University of Sydney: http://magma.maths.usyd.edu.au .
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo