[1] Abbas, B., Attouch, H.:
Dynamical systems and forward-backward algorithms associated with the sum of a convex subdifferential and a monotone cocoercive operator. Optimization 64 (2015), 10, 2223-2252.
DOI
[2] Adegbege, A. A., Kim, M. Y.:
Saddle-point convergence of constrained primal-dual dynamics. IEEE Control Systems Lett. 5 (2021), 4, 1357-1362.
DOI
[3] Afonso, M. V., Bioucas-Dias, J. M., Figueiredo, M. A. T.:
Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19 (2010), 9, 2345-2356.
DOI
[4] Arrow, K. J., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-Linear Programming. Stanford University Press, 1958.
[5] Bansode, P. A., Chinde, V., Wagh, S. R., Pasumarthy, R., Singh, N. M.:
On the exponential stability of projected primal-dual dynamics on a riemannian manifold.
DOI
[6] Başar, T., Olsder, G. J.: Dynamic Noncooperative Game Theory. SIAM, 1998.
[7] Beck, A., Teboulle, M.:
A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Jo. Imaging Sci. 2 (2009), 1, 183-202.
DOI
[8] Ben-Tal, A., Ghaoui, L. El, Nemirovski, A.: Robust optimization. In: Robust Optimization, Princeton University Press, 2009.
[9] Benzi, M., Golub, G. H., Liesen, J.:
Numerical solution of saddle point problems. Acta Numerica 14 (2005), 1-137.
DOI
[10] Bickel, P. J., Levina, E.:
Regularized estimation of large covariance matrices. Ann. Statist. 36 (2008), 1, 199-227.
DOI
[11] Bin, M., Notarnicola, I., Parisini, T.:
Semiglobal exponential stability of the discrete-time Arrow-Hurwicz-Uzawa primal-dual algorithm for constrained optimization. Math. Programm. 208 (2024), 1, 629-660.
DOI
[12] Bolte, J., Teboulle, M.:
Barrier operators and associated gradient-like dynamical systems for constrained minimization problems. SIAM J. Control Optim. 42 (2003), 4, 1266-1292.
DOI
[13] Boyd, S., Vandenberghe, L.:
Convex Optimization. Cambridge University Press, 2004.
DOI |
Zbl 1058.90049
[14] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., al., et:
Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Machine Learn. 3 (2011), 1, 1-122.
DOI
[15] Bregman, L. M.:
The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7 (1967), 3, 200-217.
DOI
[16] Browder, F. E.:
Multi-valued monotone nonlinear mappings and duality mappings in banach spaces. Trans. Amer. Math. Soc. 118 (1965), 338-351.
DOI
[17] Jr., R. E. Bruck:
On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space. J. Math. Anal. Appl. 61 (1977), 1, 159-164.
DOI
[18] Charalamous, C.:
Nonlinear least pth optimization and nonlinear programing. Math. Program 12 (1977), 1, 195-225.
DOI
[19] Cherukuri, A., Gharesifard, B., Cortes, J.:
Saddle-point dynamics: conditions for asymptotic stability of saddle points. SIAM J. Control Optim. 55 (2017), 1, 486-511.
DOI
[20] Cherukuri, A., Mallada, E., Cortés, J.:
Asymptotic convergence of constrained primal-dual dynamics. Systems Control Lett. 87 (2016), 10-15.
DOI
[21] Cherukuri, A., Mallada, E., Low, S., Cortés, J.:
The role of convexity in saddle-point dynamics: Lyapunov function and robustness. IEEE Trans. Automat. Control 63 (2018), 8, 2449-2464.
DOI
[22] Cisneros-Velarde, P., Jafarpour, S., Bullo, F.:
Distributed and time-varying primal-dual dynamics via contraction analysis.
DOI
[23] Combettes, P. L., Wajs, V. R.:
Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4 (2005), 4, 1168-1200.
DOI
[24] Dhingra, N. K., Khong, S. Z., Jovanović, M. R.:
The proximal augmented Lagrangian method for nonsmooth composite optimization. IEEE Trans. Automat. Control 64 (2019), 7, 2861-2868.
DOI
[25] Dhingra, N. K., Khong, S. Z., Jovanovic, M. R.:
A second order primal-dual method for nonsmooth convex composite optimization. IEEE Trans. Automat. Control 67 (2021), 8, 4061-4076.
DOI
[26] Ding, D., Jovanovic, M. R.: Global exponential stability of primal-dual gradient flow dynamics based on the proximal augmented Lagrangian: a Lyapunov-based approach. In: Proc. 59th IEEE Conference on Decision and Control, Jeju Island, 2020.
[27] Douglas, J., Rachford, H. H.:
On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. 82 (1956), 2, 421-439.
DOI
[28] Eckstein, J., Yu, Ch.:
Two innovations in inexact augmented Lagrangian methods for convex optimization.
DOI
[29] Fazlyab, M., Ribeiro, A., Morari, M., Preciado, V. M.:
Analysis of optimization algorithms via integral quadratic constraints: Nonstrongly convex problems. SIAM J. Optim. 28 (2018), 3, 2654-2689.
DOI
[30] Feijer, D., Paganini, F.:
Stability of primal-dual gradient dynamics and applications to network optimization. Automatica 46 (2010), 12, 1974-1981.
DOI |
Zbl 1205.93138
[31] Figueiredo, M. A. T., Nowak, R. D., Wright, S. J.:
Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Selected Topics Signal Process. 1 (2007), 4, 586-597.
DOI
[32] França, G., Robinson, D. P., Vidal, R.:
Gradient flows and proximal splitting methods: A unified view on accelerated and stochastic optimization. Physical Rev. E 103 (2021), 5, 053304.
DOI
[33] Goldsztajn, D., Paganini, F.:
Proximal regularization for the saddle point gradient dynamics. IEEE Trans. Automat. Control 66 (2021), 9, 4385-4392.
DOI
[34] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.:
Generative adversarial nets. Commun. ACM 63 (2020), 11, 139-144.
DOI
[35] Hassan-Moghaddam, S., Jovanović, M. R.: Distributed proximal augmented Lagrangian method for nonsmooth composite optimization. In: 2018 Annual American Control Conference 2018, pp. 2047-2052.
[36] Hassan-Moghaddam, S., Jovanovic, M. R.:
Global exponential stability of the douglas-rachford splitting dynamics. IFAC-PapersOnLine 53 (2020), 2, 7350-7354.
DOI
[37] Hassan-Moghaddam, S., Jovanović, M. R.:
Proximal gradient flow and douglas-rachford splitting dynamics: global exponential stability via integral quadratic constraints. Automatica 123 (2021), 109311.
DOI
[38] Hast, M., {\AA}ström, K. J., Bernhardsson, B., Boyd, S.:
Pid design by convex-concave optimization. In: 2013 European Control Conference 2013, pp. 4460-4465.
DOI
[39] Hestenes, M. R.:
Multiplier and gradient methods. J. Optim. Theory Appl. 4 (1969), 5, 303-320.
DOI
[40] Hiriart-Urruty, J. B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer Science and Business Media, 2004.
[41] Ju, X., Che, H., Li, Ch., He, X.:
Solving mixed variational inequalities via a proximal neurodynamic network with applications. Neural Process. Lett. 54 (2022), 1, 207-226.
DOI
[42] Khalil, H. K.:
Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ 1996.
Zbl 1194.93083
[43] Kose, T:
Solutions of saddle value problems by differential equations. Econometrica, J. Econometr. Soc. 1956, pp. 59-70.
DOI 10.2307/1905259
[44] LeCun, Y., Bengio, Y., Hinton, G.:
Deep learning. Nature 521 (2015), 7553, 436-444.
DOI
[45] Lessard, L., Recht, B., Packard, A.:
Analysis and design of optimization algorithms via integral quadratic constraints. SIAM J. Optim. 26 (2016), 1, 57-95.
DOI
[46] Lin, F., Fardad, M., Jovanović, M. R.:
Design of optimal sparse feedback gains via the alternating direction method of multipliers. IEEE Trans. Automat. Control 58 (2013), 9, 2426-2431.
DOI
[47] Mäkelä, M.:
Survey of bundle methods for nonsmooth optimization. Optim. Methods Software 17 (2002), 1, 1-29.
DOI
[49] Moreau, J.-J.:
Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93 (1965), 273-299.
DOI 10.24033/bsmf.1625
[50] Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.:
Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19 (2009), 4, 1574-1609.
DOI
[51] Nemirovsky, A. S., Yudin, D. B.: Problem Complexity and Method Efficiency in Optimization. John Wiley and Sons, Chichester 1983.
[52] Nesterov, Y.:
Smooth minimization of non-smooth functions. Math. Programm. 103 (2005), 1, 127-152.
DOI
[53] Neumann, J. v:
Zur theorie der gesellschaftsspiele. Math. Ann. 100 (1928), 1, 295-320.
DOI
[54] Nocedal, J., Wright, S. J.:
Numerical Optimization. Springer, 1999.
Zbl 1104.65059
[55] Passty, G. B.:
Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72 (1979), 2, 383-390.
DOI
[56] Powell, M. J. D.: A method for nonlinear constraints in minimization problems. Optimization (1969), 283-298.
[57] Qu, G., Li, N.:
On the exponential stability of primal-dual gradient dynamics. IEEE Control Systems Lett. 3 (2019), 1, 43-48.
DOI
[58] Raginsky, M., Bouvrie, J.: Continuous-time stochastic mirror descent on a network: variance reduction, consensus, convergence. In: 51st IEEE Conference on Decision and Control 2012, pp. 6793-6800.
[59] Rockafellar, R. T.:
Convex Analysis. Princeton University Press, 1970.
Zbl 1011.49013
[60] Rockafellar, R. T.:
Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1 (1976), 2, 97-116.
DOI 10.1287/moor.1.2.97
[61] Rockafellar, R. T.:
Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976), 5, 877-898.
DOI |
Zbl 0358.90053
[62] Shor, N. Z.: Minimization Methods for Non-differentiable Functions. Springer Science and Business Media, 2012.
[64] Tang, Y., Qu, G., Li, N.:
Semi-global exponential stability of augmented primal-dual gradient dynamics for constrained convex optimization. Systems Control Lett. 144 (2020), 104754.
DOI
[65] Tibshirani, R.:
Regression shrinkage and selection via the lasso. J. Royal Statist. Society: Series B (Methodological) 58 (1996), 1, 267-288.
DOI
[66] Tseng, P.:
A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38 (2000), 2, 431-446.
DOI
[67] Wachsmuth, G.:
On LICQ and the uniqueness of Lagrange multipliers. Oper. Res. Lett. 41 (2013), 1, 78-80.
DOI
[68] Wang, Z., Wei, W., Zhao, Ch., Ma, Z., Zheng, Z., Zhang, Y., Liu, F.:
Exponential stability of partial primal-dual gradient dynamics with nonsmooth objective functions. Automatica 129 (2021), 109585.
DOI