Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Gruenberg-Kegel graph; prime graph of finite group; cut-set; solvable group
Summary:
Let $\Gamma (G)$ be the Gruenberg-Kegel graph of a finite group $G$. We prove that if $G$ is solvable and $\sigma $ is a cut-set for $\Gamma (G)$, then $G$ has a $\sigma $-series of length 5 whose factors are controlled. As a consequence, we prove that if $G$ is a solvable group and $\Gamma (G)$ has a cut-vertex $p$, then the Fitting length $\ell _F(G)$ of $G$ is bounded and the bound obtained is the best possible. A cut-set is said minimal if it does not contain any other proper subset that is a cut-set for the graph. For a finite solvable group $G$, we give a geometrical description of $\Gamma (G)$ when it has minimal cut-set of size 2.
References:
[1] Alekseeva, O. A., Kondrat'ev, A. S.: Finite groups whose prime graphs do not contain triangles. I. Proc. Steklov Inst. Math. 295 (2016), S11--S20. DOI 10.1134/S0081543816090029 | MR 3468083 | Zbl 1375.20021
[2] Aschbacher, M.: Finite Group Theory. Cambridge Studies in Advanced Mathematics 10. Cambridge University Press, Cambridge (1986). DOI 10.1017/CBO9781139175319 | MR 0895134 | Zbl 0583.20001
[3] Berkovich, Y.: Groups of Prime Power Order. Vol. I. de Gruyter Expositions in Mathematics 46. Walter de Gruyter, Berlin (2008). MR 2464640 | Zbl 1168.20001
[4] Gruber, A., Keller, T. M., Lewis, M. L., Naughton, K., Strasser, B.: A characterization of the prime graph of solvable groups. J. Algebra 442 (2015), 397-422. DOI 10.1016/j.jalgebra.2014.08.040 | MR 3395066 | Zbl 1331.20029
[5] Isaacs, I. M.: Character Theory of Finite Groups. Pure and Applied Mathematics 69. Academic Press, New York (1976). DOI 10.1016/s0079-8169(08)x6037-4 | MR 0460423 | Zbl 0337.20005
[6] Lucido, M. S.: The diameter of a prime graph of a finite group. J. Group Theory 2 (1999), 157-172 \99999DOI99999 10.1515/jgth.1999.011 . DOI 10.1515/jgth.1999.011 | MR 1681526 | Zbl 0921.20020
Partner of
EuDML logo