Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
countably generated relative Mittag-Leffler; atomic; pure-projective module; definable subcategory; divisible module over RD-domains; preenvelope; coherent; Noetherian; v.N. regular; RD-purity
Summary:
A countably generated module is Mittag-Leffler if and only if it is pure-projective, i.e., a direct summand of a direct sum of finitely presented modules. Trying to generalize this description to countably generated relative Mittag-Leffler modules, one runs into serious obstacles. The last theorem of Part I of the same title describes them as what was called uniform relative pure epimorphic images of a specific kind of $\omega $-limits of finitely presented modules. A second part of this theorem attempted to make the $\omega $-limits in question more concrete. In the formulation the application of those uniform pure epimorphisms was erroneously omitted. Correcting this led to a better result to be presented here. It states that under a mild assumption on the context, every countably generated relative Mittag-Leffler module `in the context' is a direct summand of a certain preenvelope of a union of a relatively pure $\omega $-chain of finitely presented modules. In conclusion a number of examples are presented that start with and grew out of the study of $\cal L$-purity of monomorphisms in $\mathbb {Z}$-Mod for $\cal L$, the definable subcategory of divisible Abelian groups. Rings that get particular attention in this are RD-rings.
References:
[1] Yassine, A. Ben, Trlifaj, J.: Flat relative Mittag-Leffler modules and approximations. J. Algebra Appl. 23 (2024), Article ID 2450219, 13 pages. DOI 10.1142/S0219498824502190 | MR 4819328 | Zbl 07943145
[2] Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules. Volume 1. Approximations. de Gruyter Expositions in Mathematics 41. Walter de Gruyter, Berlin (2012). DOI 10.1515/9783110218114 | MR 2985554 | Zbl 1292.16001
[3] Goodearl, K. R.: Distributing tensor product over direct product. Pac. J. Math. 43 (1972), 107-110. DOI 10.2140/pjm.1972.43.107 | MR 0311714 | Zbl 0237.13007
[4] Herbera, D., Trlifaj, J.: Almost free modules and Mittag-Leffler conditions. Adv. Math. 229 (2012), 3436-3467. DOI 10.1016/j.aim.2012.02.013 | MR 2900444 | Zbl 1279.16001
[5] Herzog, I.: Elementary duality of modules. Trans. Am. Math. Soc. 340 (1993), 37-69. DOI 10.1090/S0002-9947-1993-1091706-3 | MR 1091706 | Zbl 0815.16002
[6] Prest, M.: Model Theory and Modules. London Mathematical Society Lecture Note Series 130. Cambridge University Press, Cambridge (1988). DOI 10.1017/CBO9780511600562 | MR 0933092 | Zbl 0634.03025
[7] Prest, M.: Purity, Spectra and Localisation. Encyclopedia of Mathematics and Its Applications 121. Cambridge University Press, Cambridge (2009). DOI 10.1017/CBO9781139644242 | MR 2530988 | Zbl 1205.16002
[8] Prest, M.: Strictly atomic modules in definable categories. Ann. Represent. Theory 1 (2024), 299-334. DOI 10.5802/art.9 | MR 4881926 | Zbl 07888046
[9] Puninski, G., Prest, M., Rothmaler, Ph.: Rings described by various purities. Commun. Algebra 27 (1999), 2127-2162. DOI 10.1080/00927879908826554 | MR 1683856 | Zbl 0943.16004
[10] Rada, J., Saorín, M.: Rings characterized by (pre)envelopes and (pre)covers of their modules. Commun. Algebra 26 (1998), 899-912. DOI 10.1080/00927879808826172 | MR 1606190 | Zbl 0908.16003
[11] Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Techniques de "platification" d'un module. Invent. Math. 13 (1971), 1-89 French. DOI 10.1007/BF01390094 | MR 0308104 | Zbl 0227.14010
[12] Rothmaler, Ph.: Mittag-Leffler modules and positive atomicity: Habilitationsschrift. Christian-Albrechts-Universität zu Kiel, Kiel (1994).
[13] Rothmaler, Ph.: Torsion-free, divisible, and Mittag-Leffler modules. Commun. Algebra 43 (2015), 3342-3364. DOI 10.1080/00927872.2014.918990 | MR 3354094 | Zbl 1331.16001
[14] Rothmaler, Ph.: Mittag-Leffler modules and definable subcategories. Model Theory of Modules, Algebras and Categories Contemporary Mathematics 730. AMS, Providence (2019), 171-196. DOI 10.1090/conm/730/14716 | MR 3959615 | Zbl 1423.16002
[15] Rothmaler, Ph.: Strict Mittag-Leffler modules and purely generated classes. Categorical, Homological and Combinatorial Methods in Algebra Contemporary Mathematics 751. AMS, Providence (2020), 303-327. DOI 10.1090/conm/751/15085 | MR 4132094 | Zbl 1462.16003
Partner of
EuDML logo