Previous |  Up |  Next

Article

Title: Finite solvable groups whose Gruenberg-Kegel graph has a cut-set (English)
Author: Bonazzi, Lorenzo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 4
Year: 2025
Pages: 1093-1104
Summary lang: English
.
Category: math
.
Summary: Let $\Gamma (G)$ be the Gruenberg-Kegel graph of a finite group $G$. We prove that if $G$ is solvable and $\sigma $ is a cut-set for $\Gamma (G)$, then $G$ has a $\sigma $-series of length 5 whose factors are controlled. As a consequence, we prove that if $G$ is a solvable group and $\Gamma (G)$ has a cut-vertex $p$, then the Fitting length $\ell _F(G)$ of $G$ is bounded and the bound obtained is the best possible. A cut-set is said minimal if it does not contain any other proper subset that is a cut-set for the graph. For a finite solvable group $G$, we give a geometrical description of $\Gamma (G)$ when it has minimal cut-set of size 2. (English)
Keyword: Gruenberg-Kegel graph
Keyword: prime graph of finite group
Keyword: cut-set
Keyword: solvable group
MSC: 20F16
DOI: 10.21136/CMJ.2025.0380-21
.
Date available: 2025-12-20T07:04:49Z
Last updated: 2025-12-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153231
.
Reference: [1] Alekseeva, O. A., Kondrat'ev, A. S.: Finite groups whose prime graphs do not contain triangles. I.Proc. Steklov Inst. Math. 295 (2016), S11--S20. Zbl 1375.20021, MR 3468083, 10.1134/S0081543816090029
Reference: [2] Aschbacher, M.: Finite Group Theory.Cambridge Studies in Advanced Mathematics 10. Cambridge University Press, Cambridge (1986). Zbl 0583.20001, MR 0895134, 10.1017/CBO9781139175319
Reference: [3] Berkovich, Y.: Groups of Prime Power Order. Vol. I.de Gruyter Expositions in Mathematics 46. Walter de Gruyter, Berlin (2008). Zbl 1168.20001, MR 2464640
Reference: [4] Gruber, A., Keller, T. M., Lewis, M. L., Naughton, K., Strasser, B.: A characterization of the prime graph of solvable groups.J. Algebra 442 (2015), 397-422. Zbl 1331.20029, MR 3395066, 10.1016/j.jalgebra.2014.08.040
Reference: [5] Isaacs, I. M.: Character Theory of Finite Groups.Pure and Applied Mathematics 69. Academic Press, New York (1976). Zbl 0337.20005, MR 0460423, 10.1016/s0079-8169(08)x6037-4
Reference: [6] Lucido, M. S.: The diameter of a prime graph of a finite group.J. Group Theory 2 (1999), 157-172 \99999DOI99999 10.1515/jgth.1999.011 . Zbl 0921.20020, MR 1681526, 10.1515/jgth.1999.011
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo