Previous |  Up |  Next

Article

Title: Mittag-Leffler modules and definable subcategories II (English)
Author: Rothmaler, Philipp
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 4
Year: 2025
Pages: 1105-1116
Summary lang: English
.
Category: math
.
Summary: A countably generated module is Mittag-Leffler if and only if it is pure-projective, i.e., a direct summand of a direct sum of finitely presented modules. Trying to generalize this description to countably generated relative Mittag-Leffler modules, one runs into serious obstacles. The last theorem of Part I of the same title describes them as what was called uniform relative pure epimorphic images of a specific kind of $\omega $-limits of finitely presented modules. A second part of this theorem attempted to make the $\omega $-limits in question more concrete. In the formulation the application of those uniform pure epimorphisms was erroneously omitted. Correcting this led to a better result to be presented here. It states that under a mild assumption on the context, every countably generated relative Mittag-Leffler module `in the context' is a direct summand of a certain preenvelope of a union of a relatively pure $\omega $-chain of finitely presented modules. In conclusion a number of examples are presented that start with and grew out of the study of $\cal L$-purity of monomorphisms in $\mathbb {Z}$-Mod for $\cal L$, the definable subcategory of divisible Abelian groups. Rings that get particular attention in this are RD-rings. (English)
Keyword: countably generated relative Mittag-Leffler
Keyword: atomic
Keyword: pure-projective module
Keyword: definable subcategory
Keyword: divisible module over RD-domains
Keyword: preenvelope
Keyword: coherent
Keyword: Noetherian
Keyword: v.N. regular
Keyword: RD-purity
MSC: 16B70
MSC: 16D40
MSC: 16D70
MSC: 16D80
MSC: 16S90
DOI: 10.21136/CMJ.2025.0293-24
.
Date available: 2025-12-20T07:08:16Z
Last updated: 2025-12-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153233
.
Reference: [1] Yassine, A. Ben, Trlifaj, J.: Flat relative Mittag-Leffler modules and approximations.J. Algebra Appl. 23 (2024), Article ID 2450219, 13 pages. Zbl 07943145, MR 4819328, 10.1142/S0219498824502190
Reference: [2] Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules. Volume 1. Approximations.de Gruyter Expositions in Mathematics 41. Walter de Gruyter, Berlin (2012). Zbl 1292.16001, MR 2985554, 10.1515/9783110218114
Reference: [3] Goodearl, K. R.: Distributing tensor product over direct product.Pac. J. Math. 43 (1972), 107-110. Zbl 0237.13007, MR 0311714, 10.2140/pjm.1972.43.107
Reference: [4] Herbera, D., Trlifaj, J.: Almost free modules and Mittag-Leffler conditions.Adv. Math. 229 (2012), 3436-3467. Zbl 1279.16001, MR 2900444, 10.1016/j.aim.2012.02.013
Reference: [5] Herzog, I.: Elementary duality of modules.Trans. Am. Math. Soc. 340 (1993), 37-69. Zbl 0815.16002, MR 1091706, 10.1090/S0002-9947-1993-1091706-3
Reference: [6] Prest, M.: Model Theory and Modules.London Mathematical Society Lecture Note Series 130. Cambridge University Press, Cambridge (1988). Zbl 0634.03025, MR 0933092, 10.1017/CBO9780511600562
Reference: [7] Prest, M.: Purity, Spectra and Localisation.Encyclopedia of Mathematics and Its Applications 121. Cambridge University Press, Cambridge (2009). Zbl 1205.16002, MR 2530988, 10.1017/CBO9781139644242
Reference: [8] Prest, M.: Strictly atomic modules in definable categories.Ann. Represent. Theory 1 (2024), 299-334. Zbl 07888046, MR 4881926, 10.5802/art.9
Reference: [9] Puninski, G., Prest, M., Rothmaler, Ph.: Rings described by various purities.Commun. Algebra 27 (1999), 2127-2162. Zbl 0943.16004, MR 1683856, 10.1080/00927879908826554
Reference: [10] Rada, J., Saorín, M.: Rings characterized by (pre)envelopes and (pre)covers of their modules.Commun. Algebra 26 (1998), 899-912. Zbl 0908.16003, MR 1606190, 10.1080/00927879808826172
Reference: [11] Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Techniques de "platification" d'un module.Invent. Math. 13 (1971), 1-89 French. Zbl 0227.14010, MR 0308104, 10.1007/BF01390094
Reference: [12] Rothmaler, Ph.: Mittag-Leffler modules and positive atomicity: Habilitationsschrift.Christian-Albrechts-Universität zu Kiel, Kiel (1994).
Reference: [13] Rothmaler, Ph.: Torsion-free, divisible, and Mittag-Leffler modules.Commun. Algebra 43 (2015), 3342-3364. Zbl 1331.16001, MR 3354094, 10.1080/00927872.2014.918990
Reference: [14] Rothmaler, Ph.: Mittag-Leffler modules and definable subcategories.Model Theory of Modules, Algebras and Categories Contemporary Mathematics 730. AMS, Providence (2019), 171-196. Zbl 1423.16002, MR 3959615, 10.1090/conm/730/14716
Reference: [15] Rothmaler, Ph.: Strict Mittag-Leffler modules and purely generated classes.Categorical, Homological and Combinatorial Methods in Algebra Contemporary Mathematics 751. AMS, Providence (2020), 303-327. Zbl 1462.16003, MR 4132094, 10.1090/conm/751/15085
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo