| Title: | Weighted Hardy-Sobolev type integrability for generalized Riesz potentials in weighted Morrey-Orlicz spaces (English) |
| Author: | Mizuta, Yoshihiro |
| Author: | Shimomura, Tetsu |
| Language: | English |
| Journal: | Czechoslovak Mathematical Journal |
| ISSN: | 0011-4642 (print) |
| ISSN: | 1572-9141 (online) |
| Volume: | 75 |
| Issue: | 4 |
| Year: | 2025 |
| Pages: | 1177-1195 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | We are concerned with weighted Hardy-Sobolev type integrabilities for generalized Riesz potentials $$ R_{\alpha ,m}f(x) = \int _{{\mathbb R}^n} R_{\alpha ,m} (x,y) f(y) {\rm d} y $$ of functions $f$ in weighted Morrey-Orlicz spaces, where $R_{\alpha }(x) = |x|^{\alpha -n}$ and $$ R_{\alpha ,m}(x,y) = R_{\alpha }(x-y) - \sum _{|\ell | \le m-1} \frac {y^{\ell }}{\ell !} (D^{\ell }R_{\alpha })(-x). $$ Those potentials are used to give a representation of $C^1$-functions on the punctured space ${\mathbb R} ^n\setminus \{0\}$. As an application, we obtain Hardy-Sobolev type integrabilities for general double phase functionals given by $$ \varphi (x,t) =\varphi _1(t) + \varphi _2(b(x)t). $$ (English) |
| Keyword: | Hardy-Sobolev integrability |
| Keyword: | generalized Riesz potential |
| Keyword: | weighted Morrey-Orlicz space |
| Keyword: | double phase functional |
| MSC: | 26D15 |
| MSC: | 46E30 |
| MSC: | 47G10 |
| DOI: | 10.21136/CMJ.2025.0533-24 |
| . | |
| Date available: | 2025-12-20T07:15:35Z |
| Last updated: | 2025-12-22 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153236 |
| . | |
| Reference: | [1] Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase.Calc. Var. Partial Differ. Equ. 57 (2018), Article ID 62, 48 pages. Zbl 1394.49034, MR 3775180, 10.1007/s00526-018-1332-z |
| Reference: | [2] Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals.Arch. Ration. Mech. Anal. 218 (2015), 219-273. Zbl 1325.49042, MR 3360738, 10.1007/s00205-015-0859-9 |
| Reference: | [3] Filippis, C. De, Mingione, G.: Regularity for double phase problems at nearly linear growth.Arch. Ration. Mech. Anal. 247 (2023), Article ID 85, 50 pages. Zbl 1525.35089, MR 4630451, 10.1007/s00205-023-01907-3 |
| Reference: | [4] Hästö, P., Ok, J.: Regularity theory for non-autonomous problems with a priori assumptions.Calc. Var. Partial Differ. Equ. 62 (2023), Article ID 251, 28 pages. Zbl 1529.35109, MR 4658589, 10.1007/s00526-023-02587-3 |
| Reference: | [5] Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy Inequality: About Its History and Some Related Results.Vydavatelský servis, Plzeň (2007). Zbl 1213.42001, MR 2351524 |
| Reference: | [6] Kufner, A., Persson, L.-E., Samko, N.: Weighted Inequalities of Hardy Type.World Scientific, Hackensack (2017). Zbl 1380.26001, MR 3676556, 10.1142/10052 |
| Reference: | [7] Maeda, F.-Y., Mizuta, Y., Ohno, T.: Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$.Ann. Acad. Sci. Fenn., Math. 35 (2010), 405-420. Zbl 1216.46025, MR 2731699, 10.5186/aasfm.2010.3526 |
| Reference: | [8] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces.Bull. Sci. Math. 137 (2013), 76-96. Zbl 1267.46045, MR 3007101, 10.1016/j.bulsci.2012.03.008 |
| Reference: | [9] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequality for double phase functionals with variable exponents.Forum Math. 31 (2019), 517-527. Zbl 1423.46049, MR 3918454, 10.1515/forum-2018-0077 |
| Reference: | [10] Maeda, F.-Y., Mizuta, Y., Shimomura, T.: Variable exponent weighted norm inequality for generalized Riesz potentials on the unit ball.Collect. Math. 69 (2018), 377-394. Zbl 1405.46023, MR 3842212, 10.1007/s13348-017-0210-x |
| Reference: | [11] Mizuta, Y.: On the behaviour at infinity of superharmonic functions.J. Lond. Math. Soc., II. Ser. 27 (1983), 97-105. Zbl 0516.31002, MR 0686508, 10.1112/jlms/s2-27.1.97 |
| Reference: | [12] Mizuta, Y.: Potential Theory in Euclidean Spaces.GAKUTO International Series. Mathematical Sciences and Applications. Gakkōtosho, Tokyo (1996). Zbl 0849.31001, MR 1428685 |
| Reference: | [13] Mizuta, Y.: Integral representations, differentiability properties and limits at infinity for Beppo Levi functions.Potential Anal. 6 (1997), 237-267. Zbl 0885.31004, MR 1452545, 10.1023/A:1017996900877 |
| Reference: | [14] Mizuta, Y., Ohno, T., Shimomura, T., Yamauchi, Y.: Growth properties for generalized Riesz potentials of functions satisfying Orlicz conditions.Math. Nachr. 293 (2020), 1156-1173. Zbl 1477.31026, MR 4107988, 10.1002/mana.201800569 |
| Reference: | [15] Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities in the half-space for double phase functionals.Rocky Mt. J. Math. 51 (2021), 2159-2169. Zbl 1497.46036, MR 4397671, 10.1216/rmj.2021.51.2159 |
| Reference: | [16] Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities in the unit ball for double phase functionals.J. Math. Anal. Appl. 501 (2021), Article ID 124133, 17 pages. Zbl 1478.46037, MR 4258797, 10.1016/j.jmaa.2020.124133 |
| Reference: | [17] Mizuta, Y., Shimomura, T.: Sobolev and Trudinger inequalities in weighted Morrey spaces for double phase functionals.Z. Anal. Anwend. 41 (2022), 439-466. Zbl 1516.31016, MR 4571617, 10.4171/ZAA/1708 |
| Reference: | [18] Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities for double phase functionals.Hokkaido Math. J. 52 (2023), 331-352. Zbl 1529.46021, MR 4612171, 10.14492/hokmj/2021-544 |
| Reference: | [19] Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities for Riesz potentials of functions in Orlicz spaces.Acta Math. Hung. 171 (2023), 221-240. Zbl 7794380, MR 4682766, 10.1007/s10474-023-01389-5 |
| Reference: | [20] Mizuta, Y., Shimomura, T.: Integrability for Hardy operators of double phase.Z. Anal. Anwend. 42 (2023), 375-402. Zbl 1548.46024, MR 4699886, 10.4171/ZAA/1732 |
| Reference: | [21] Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities and boundary growth of Sobolev functions for double phase functionals on the half space.Ric. Mat. 73 (2024), 1707-1723. Zbl 1556.46025, MR 4780063, 10.1007/s11587-022-00686-5 |
| Reference: | [22] Mizuta, Y., Shimomura, T.: Hardy-Sobolev type integrability for generalized Riesz potentials in weighted Morrey-Orlicz spaces.Tokyo J. Math 48 (2025), 141-166. Zbl 08087152, MR 4949385, 10.3836/tjm/1502179419 |
| Reference: | [23] Opic, B., Kufner, A.: Hardy-Type Inequalities.Pitman Research Notes in Mathematics 219. Longman Scientific & Technical, Harlow (1990). Zbl 0698.26007, MR 1069756 |
| Reference: | [24] Ragusa, M. A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents.Adv. Nonlinear Anal. 9 (2020), 710-728. Zbl 1420.35145, MR 3985000, 10.1515/anona-2020-0022 |
| Reference: | [25] Shimomura, T., Mizuta, Y.: Taylor expansion of Riesz potentials.Hiroshima Math. J. 25 (1995), 595-621. Zbl 0863.31005, MR 1364077, 10.32917/hmj/1206127635 |
| . |
Fulltext not available (moving wall 24 months)