Previous |  Up |  Next

Article

Title: Multilinear fractional maximal and integral operators with homogeneous kernels, Hardy-Littlewood-Sobolev and Olsen-type inequalities (English)
Author: Chen, Cong
Author: Yang, Kaikai
Author: Wang, Hua
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 4
Year: 2025
Pages: 1133-1176
Summary lang: English
.
Category: math
.
Summary: Let $m\in \mathbb {N}$ and $0<\alpha <mn$. Let $\mathcal {T}_{\Omega ,\alpha ;m}$ be the multilinear fractional integral operator with homogeneous kernels, and let $\mathcal {M}_{\Omega ,\alpha ;m}$ be the multilinear fractional maximal operator with homogeneous kernels. We will use the idea of Hedberg to reprove that the multilinear operators $\mathcal {T}_{\Omega ,\alpha ;m}$ and $\mathcal {M}_{\Omega ,\alpha ;m}$ are bounded from $L^{p_1}(\mathbb R^n)\times L^{p_2}(\mathbb R^n) \times \nobreak \cdots \times L^{p_m}(\mathbb R^n)$ into $L^q(\mathbb R^n)$ provided that $\vec {\Omega }=(\Omega _1,\Omega _2,\dots ,\Omega _m)\in [L^s({\bf S}^{n-1})]^{m}$, $s'<p_1,p_2,\dots ,p_m<\infty $, $s'/m<p<n/{\alpha }$, $$ \frac {1}{p}=\frac {1}{p_1}+\frac {1}{p_2}+\cdots +\frac {1}{p_m} \quad \text {and} \quad \frac {1}{q}=\frac {1}{p}-\frac {\alpha }{n}. $$ This result was first obtained by Chen and Xue. We also prove that under the assumptions that $\vec {\Omega }=(\Omega _1,\Omega _2,\dots ,\Omega _m) \in [L^s({\bf S}^{n-1})]^{m}$, $s'\leq p_1,p_2,\dots ,p_m<\infty $, $s'/m\leq p<n/{\alpha }$ and $(*)$, the multilinear operators $\mathcal {T}_{\Omega ,\alpha ;m}$ and $\mathcal {M}_{\Omega ,\alpha ;m}$ are bounded from $L^{p_1}(\mathbb R^n)\times L^{p_2}(\mathbb R^n) \times \cdots \times L^{p_m}(\mathbb R^n)$ into $L^{q,\infty }(\mathbb R^n)$, which are completely new. Moreover, we will use the idea of Adams to show that $\mathcal {T}_{\Omega ,\alpha ;m}$ and $\mathcal {M}_{\Omega ,\alpha ;m}$ are bounded from $L^{p_1,\kappa }(\mathbb R^n)\times L^{p_2,\kappa }(\mathbb R^n) \times \cdots \times L^{p_m,\kappa }(\mathbb R^n)$ into $L^{q,\kappa }(\mathbb R^n)$ whenever $s'<p_1,p_2,\dots ,p_m<\infty $, $0<\kappa <1$, $s'/m<p<{n(1-\kappa )}/{\alpha }$, $$ \frac {1}{p}=\frac {1}{p_1}+\frac {1}{p_2}+\cdots +\frac {1}{p_m} \quad \text {and} \quad \frac {1}{q}=\frac {1}{p}-\frac {\alpha }{n(1-\kappa )}, $$ and also bounded from $L^{p_1,\kappa }(\mathbb R^n)\times L^{p_2,\kappa }(\mathbb R^n) \times \cdots \times L^{p_m,\kappa }(\mathbb R^n)$ into $WL^{q,\kappa }(\mathbb R^n)$ whenever $s'\leq p_1,p_2,\dots ,p_m<\infty $, $0<\kappa <1$, $s'/m\leq p<{n(1-\kappa )}/{\alpha }$ and $(**)$. These results mentioned above are also completely new. In addition, some new estimates in the limiting cases are also established. Applications to the Hardy-Littlewood-Sobolev and Olsen-type inequalities are discussed as well. (English)
Keyword: multilinear fractional integral operator
Keyword: multilinear fractional maximal operator
Keyword: homogeneous kernel
Keyword: Morrey space
Keyword: Hardy-Littlewood-Sobolev inequality
Keyword: Olsen-type inequality\looseness -1
MSC: 42B20
MSC: 42B25
MSC: 42B35
DOI: 10.21136/CMJ.2025.0509-24
.
Date available: 2025-12-20T07:15:09Z
Last updated: 2025-12-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153235
.
Reference: [1] Adams, D. R.: A note on Riesz potentials.Duke Math. J. 42 (1975), 765-778. Zbl 0336.46038, MR 0458158, 10.1215/S0012-7094-75-04265-9
Reference: [2] Adams, D. R.: Morrey Spaces.Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2015). Zbl 1339.42001, MR 3467116, 10.1007/978-3-319-26681-7
Reference: [3] Chanillo, S., Watson, D. K., Wheeden, R. L.: Some integral and maximal operators related to starlike sets.Stud. Math. 107 (1993), 223-255. Zbl 0809.42008, MR 1247201, 10.4064/sm-107-3-223-255
Reference: [4] Chen, X., Xue, Q.: Weighted estimates for a class of multilinear fractional type operators.J. Math. Anal. Appl. 362 (2010), 355-373. Zbl 1200.26023, MR 2557692, 10.1016/j.jmaa.2009.08.022
Reference: [5] Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function.Rend. Math. Appl., VII. Ser. 7 (1987), 273-279. Zbl 0717.42023, MR 0985999
Reference: [6] Ding, Y., Lu, S.: Weighted norm inequalities for fractional integral operators with rough kernel.Can. J. Math. 50 (1998), 29-39. Zbl 0905.42010, MR 1618714, 10.4153/CJM-1998-003-1
Reference: [7] Ding, Y., Lu, S.: Boundedness of homogeneous fractional integrals on $L^p$ for $n/\alpha{\leq} p\leq\infty$.Nagoya Math. J. 167 (2002), 17-33. Zbl 1031.42015, MR 1924717, 10.1017/S0027763000025411
Reference: [8] Du, J. L., Wang, H.: A new estimate for homogeneous fractional integral operators on weighted Morrey spaces.Real Anal. Exch 50 (2025), 71-86. Zbl 8072284, MR 4926035, 10.14321/realanalexch.1710175844
Reference: [9] Duoandikoetxea, J.: Fourier Analysis.Graduate Studies in Mathematics 29. AMS, Providence (2001). Zbl 0969.42001, MR 1800316, 10.1090/gsm/029
Reference: [10] Frank, R. L., Lieb, E. H.: Sharp constants in several inequalities on the Heisenberg group.Ann. Math. (2) 176 (2012), 349-381. Zbl 1252.42023, MR 2925386, 10.4007/annals.2012.176.1.6
Reference: [11] Grafakos, L.: On multilinear fractional integrals.Stud. Math. 102 (1992), 49-56. Zbl 0808.42014, MR 1164632, 10.4064/sm-102-1-49-56
Reference: [12] Grafakos, L.: Classical Fourier Analysis.Graduate Texts in Mathematics 249. Springer, New York (2014). Zbl 1304.42001, MR 3243734, 10.1007/978-1-4939-1194-3
Reference: [13] Grafakos, L., Kalton, N.: Some remarks on multilinear maps and interpolation.Math. Ann. 319 (2001), 151-180. Zbl 0982.46018, MR 1812822, 10.1007/PL00004426
Reference: [14] Hedberg, L. I.: On certain convolution inequalities.Proc. Am. Math. Soc. 36 (1972), 505-510. Zbl 0283.26003, MR 0312232, 10.1090/S0002-9939-1972-0312232-4
Reference: [15] Iida, T., Sato, E., Sawano, Y., Tanaka, H.: Weighted norm inequalities for multilinear fractional operators on Morrey spaces.Stud. Math. 205 (2011), 139-170. Zbl 1234.42012, MR 2824893, 10.4064/sm205-2-2
Reference: [16] Iida, T., Sato, E., Sawano, Y., Tanaka, H.: Multilinear fractional integrals on Morrey spaces.Acta Math. Sin., Engl. Ser. 28 (2012), 1375-1384. Zbl 1254.26012, MR 2928484, 10.1007/s10114-012-0617-y
Reference: [17] Iida, T., Sato, E., Sawano, Y., Tanaka, H.: Sharp bounds for multilinear fractional integral operators on Morrey type spaces.Positivity 16 (2012), 339-358. Zbl 1256.42037, MR 2929094, 10.1007/s11117-011-0129-5
Reference: [18] John, F., Nirenberg, L.: On functions of bounded mean oscillation.Commun. Pure Appl. Math. 14 (1961), 415-426. Zbl 0102.04302, MR 0131498, 10.1002/cpa.3160140317
Reference: [19] Kenig, C. E., Stein, E. M.: Multilinear estimates and fractional integration.Math. Res. Lett. 6 (1999), 1-15. Zbl 0952.42005, MR 1682725, 10.4310/MRL.1999.v6.n1.a1
Reference: [20] Komori, Y., Shirai, S.: Weighted Morrey spaces and a singular integral operator.Math. Nachr. 282 (2009), 219-231. Zbl 1160.42008, MR 2493512, 10.1002/mana.200610733
Reference: [21] Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory.Adv. Math. 220 (2009), 1222-1264. Zbl 1160.42009, MR 2483720, 10.1016/j.aim.2008.10.014
Reference: [22] Li, K., Moen, K., Sun, W.: Sharp weighted inequalities for multilinear fractional maximal operators and fractional integrals.Math. Nachr. 288 (2015), 619-632. Zbl 1314.42021, MR 3338917, 10.1002/mana.201300287
Reference: [23] Lieb, E. H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities.Ann. Math. (2) 118 (1983), 349-374. Zbl 0527.42011, MR 0717827, 10.2307/2007032
Reference: [24] Lieb, E. H., Loss, M.: Analysis.Graduate Studies in Mathematics 14. AMS, Providence (2001). Zbl 0966.26002, MR 1817225, 10.1090/gsm/014
Reference: [25] Lu, S., Ding, Y., Yan, D.: Singular Integrals and Related Topics.World Scientific, Hackensack (2007). Zbl 1124.42011, MR 2354214, 10.1142/6428
Reference: [26] Lu, S., Yang, D., Zhou, Z.: Sublinear operators with rough kernel on generalized Morrey spaces.Hokkaido Math. J. 27 (1998), 219-232. Zbl 0895.42005, MR 1608644, 10.14492/hokmj/1351001259
Reference: [27] Mizuhara, T.: Boundedness of some classical operators on generalized Morrey spaces.Harmonic Analysis ICM-90 Satellite Conference Proceedings. Springer, Tokyo (1991), 183-189. Zbl 0771.42007, MR 1261439, 10.1007/978-4-431-68168-7_16
Reference: [28] Moen, K.: Weighted inequalities for multilinear fractional integral operators.Collect. Math. 60 (2009), 213-238. Zbl 1172.26319, MR 2514845, 10.1007/BF03191210
Reference: [29] C. B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations.Trans. Am. Math. Soc. 43 (1938), 126-166. Zbl 0018.40501, MR 1501936, 10.1090/S0002-9947-1938-1501936-8
Reference: [30] Muckenhoupt, B., Wheeden, R. L.: Weighted norm inequalities for singular and fractional integrals.Trans. Am. Math. Soc. 161 (1971), 249-258. Zbl 0226.44007, MR 0285938, 10.1090/S0002-9947-1971-0285938-7
Reference: [31] Muckenhoupt, B., Wheeden, R. L.: Weighted norm inequalities for fractional integrals.Trans. Am. Math. Soc. 192 (1974), 261-274. Zbl 0289.26010, MR 0340523, 10.1090/S0002-9947-1974-0340523-6
Reference: [32] Olsen, P. A.: Fractional integration, Morrey spaces and a Schrödinger equation.Commun. Partial Differ. Equations 20 (1995), 2005-2055. Zbl 0838.35017, MR 1361729, 10.1080/03605309508821161
Reference: [33] Peetre, J.: On the theory of $\mathcal L_{p,\lambda}$ spaces.J. Funct. Anal. 4 (1969), 71-87. Zbl 0175.42602, MR 0241965, 10.1016/0022-1236(69)90022-6
Reference: [34] Pradolini, G.: Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators.J. Math. Anal. Appl. 367 (2010), 640-656. Zbl 1198.42011, MR 2607287, 10.1016/j.jmaa.2010.02.008
Reference: [35] Sawano, Y., Sugano, S., Tanaka, H.: Orlicz-Morrey spaces and fractional operators.Potential Anal. 36 (2012), 517-556. Zbl 1242.42017, MR 2904632, 10.1007/s11118-011-9239-8
Reference: [36] Stein, E. M.: Note on the class $L\log L$.Stud. Math. 32 (1969), 305-310. Zbl 0182.47803, MR 0247534, 10.4064/sm-32-3-305-310
Reference: [37] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton Mathematical Series 30. Princeton University Press, Princeton (1970). Zbl 0207.13501, MR 0290095, 10.1515/9781400883882
Reference: [38] Tang, L.: Endpoint estimates for multilinear fractional integrals.J. Aust. Math. Soc. 84 (2008), 419-429. Zbl 1153.42008, MR 2453689, 10.1017/S1446788708000724
Reference: [39] Wang, H.: Boundedness of fractional integral operators with rough kernels on weighted Morrey spaces.Acta Math. Sin., Chin. Ser. 56 (2013), 175-186 Chinese. Zbl 1289.42057, MR 3097397, 10.12386/A2013sxxb0018
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo