Previous |  Up |  Next

Article

Title: A study of $S$-primary decompositions (English)
Author: Singh, Tushar
Author: Ansari, Ajim Uddin
Author: Kumar, Shiv Datt
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 4
Year: 2025
Pages: 1241-1253
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring with identity, and let $S \subseteq R$ be a multiplicative set. An ideal $Q$ of $R$ (disjoint from $S$) is said to be $S$-primary if there exists an $s\in S$ such that for all $x,y\in R$ with $xy\in Q$, we have $sx\in Q$ or $sy\in {\rm rad}(Q)$. Also, we say that an ideal of $R$ is $S$-primary decomposable or has an $S$-primary decomposition if it can be written as a finite intersection of $S$-primary ideals. First we provide an example of an $S$-Noetherian ring in which an ideal does not have a primary decomposition. Then our main aim is to establish the existence and uniqueness of $S$-primary decomposition in $S$-Noetherian rings as an extension of a historical theorem of Lasker-Noether. (English)
Keyword: $S$-Noetherian ring
Keyword: $S$-primary ideal
Keyword: $S$-irreducible ideal
Keyword: $S$-primary decomposition
MSC: 13B02
MSC: 13C05
MSC: 13E05
DOI: 10.21136/CMJ.2025.0029-25
.
Date available: 2025-12-20T07:20:22Z
Last updated: 2025-12-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153240
.
Reference: [1] Anderson, D. D., Dumitrescu, T.: $S$-Noetherian rings.Commun. Algebra 30 (2002), 4407-4416. Zbl 1060.13007, MR 1936480, 10.1081/AGB-120013328
Reference: [2] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra.Addison-Wesley, Reading (1969). Zbl 0175.03601, MR 0242802
Reference: [3] Baeck, J., Lee, G., Lim, J. W.: $S$-Noetherian rings and their extensions.Taiwanese J. Math. 20 (2016), 1231-1250. Zbl 1357.16039, MR 3580293, 10.11650/tjm.20.2016.7436
Reference: [4] Bilgin, Z., Reyes, M. L., Tekir, Ü.: On right $S$-Noetherian rings and $S$-Noetherian modules.Commun. Algebra 46 (2018), 863-869. Zbl 1410.16026, MR 3764903, 10.1080/00927872.2017.1332199
Reference: [5] Gilmer, R., Heinzer, W.: The Laskerian property, power series rings and Noetherian spectra.Proc. Am. Math. Soc. 79 (1980), 13-16. Zbl 0447.13009, MR 0560575, 10.1090/S0002-9939-1980-0560575-6
Reference: [6] Hamed, A.: $S$-Noetherian spectrum condition.Commun. Algebra 46 (2018), 3314-3321. Zbl 1395.13016, MR 3788995, 10.1080/00927872.2017.1412455
Reference: [7] Hamed, A., Hizem, S.: $S$-Noetherian rings of the forms $\Bbb A [X]$ and $\Bbb A [[X]]$.Commun. Algebra 43 (2015), 3848-3856. Zbl 1329.13014, MR 3360852, 10.1080/00927872.2014.924127
Reference: [8] Hamed, A., Hizem, S.: Modules satisfying the $S$-Noetherian property and $S$-ACCR.Commun. Algebra 44 (2016), 1941-1951. Zbl 1347.13005, MR 3490657, 10.1080/00927872.2015.1027377
Reference: [9] Hamed, A., Malek, A.: $S$-prime ideals of a commutative ring.Beitr. Algebra Geom. 61 (2020), 533-542. Zbl 1442.13010, MR 4127389, 10.1007/s13366-019-00476-5
Reference: [10] Kaplansky, I.: Commutative Rings.University of Chicago Press, Chicago (1974). Zbl 0296.13001, MR 0345945
Reference: [11] Lasker, E.: Zur Theorie der Moduln und Ideale.Math. Ann. 60 (1905), 20-116 German \99999JFM99999 36.0292.01. MR 1511288, 10.1007/BF01447495
Reference: [12] Lim, J. W.: A note on $S$-Noetherian domains.Kyungpook Math. J. 55 (2015), 507-514. Zbl 1329.13006, MR 3414628, 10.5666/KMJ.2015.55.3.507
Reference: [13] Massaoud, E.: $S$-primary ideals of a commutative ring.Commun. Algebra 50 (2022), 988-997. Zbl 1481.13007, MR 4379651, 10.1080/00927872.2021.1977939
Reference: [14] Noether, E.: Idealtheorie in Ringbereichen.Math. Ann. 83 (1921), 24-66 German \99999JFM99999 48.0121.03. MR 1511996, 10.1007/BF01464225
Reference: [15] Singh, T., Ansari, A. U., Kumar, S. D.: $S$-Noetherian rings, modules and their generalizations.Surv. Math. Appl. 18 (2023), 163-182. Zbl 1537.13035, MR 4657507
Reference: [16] Vella, D. C.: Primary decomposition in Boolean rings.Pi Mu Epsilon J. 14 (2018), 581-588. Zbl 1432.13004, MR 3887503
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo