Previous |  Up |  Next

Article

Title: Non-central limit theorem for the oscillation of the Rosenblatt process (English)
Author: Araya, Héctor
Author: Tudor, Ciprian A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 4
Year: 2025
Pages: 1255-1274
Summary lang: English
.
Category: math
.
Summary: Let $(Z ^{H}_{t}, t\geq 0)$ be the Rosenblatt process with Hurst index $H\in (\frac {1}{2},1 )$. We analyze the limit behavior of the oscillation of the Rosenblatt process given by $X^{H, \varepsilon }_{t} = \varepsilon ^{-H} (Z^{H}_{t+\varepsilon }- Z^{H}_{t})$ with $\varepsilon >0$ and $t\geq 0$. Based on the Wiener chaos expansion, we prove that the quantity $M_{Q} ( X ^{\varepsilon })= \int _{0}^{1} Q (X ^{\varepsilon }_{t}) {\rm d} t$ converges as $\varepsilon \to 0$, almost surely and in $ L^{q}(\Omega )$ for any $q\geq 1$, to $ {\bf E} Q(Z^{H}_{1})$ for any polynomial function $Q$ with $ {\bf E} Q(Z^{H}_{1})<\infty $. We also obtain a second order result, i.e., after a proper renormalization, the quantity $M_{Q} ( X ^{\varepsilon })-{\bf E} Q(Z^{H}_{1})$ converges as $\varepsilon \to 0$, almost surely and in $ L^{q}(\Omega )$ for any $q\geq 1$, to a Rosenblatt-distributed random variable. (English)
Keyword: multiple stochastic integral
Keyword: Wiener chaos
Keyword: Rosenblatt process
Keyword: oscillation of stochastic process
MSC: 60F05
MSC: 60G15
MSC: 60H05
MSC: 60H07
DOI: 10.21136/CMJ.2025.0040-25
.
Date available: 2025-12-20T07:23:50Z
Last updated: 2025-12-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153241
.
Reference: [1] Azaïs, J.-M., Wschebor, M.: Almost sure oscillation of certain random processes.Bernoulli 2 (1996), 257-270. Zbl 0885.60018, MR 1416866, 10.2307/3318523
Reference: [2] Azaïs, J.-M., Wschebor, M.: Oscillation presque sûre de martingales continues.Séminaire Probabilités XXXI Lecture Notes in Mathematics 1655. Springer, Berlin (1997), 69-76 French. Zbl 0882.60018, MR 1478717, 10.1007/BFb0119293
Reference: [3] Azaïs, J.-M., Wschebor, M.: Level Sets and Extrema of Random Processes and Fields.John Wiley & Sons, Hoboken (2009). Zbl 1168.60002, MR 2478201, 10.1002/9780470434642
Reference: [4] Berzin-Joseph, C., León, J. R.: Weak convergence of the integrated number of level crossings to the local time for Wiener processes.C. R. Acad. Sci., Paris, Sér. I 319 (1994), 1311-1316. Zbl 0812.60069, MR 1310678
Reference: [5] Berzin-Joseph, C., León, J. R., Ortega, J.: Increments and crossings for the Brownian bridge: Weak convergence.C. R. Acad. Sci., Paris, Sér. I, Math. 327 (1998), 587-592. Zbl 1002.60573, MR 1650627, 10.1016/S0764-4442(98)89169-6
Reference: [6] Čoupek, P., Duncan, T. E., Pasik-Duncan, B.: A stochastic calculus for Rosenblatt processes.Stochastic Processes Appl. 150 (2022), 853-885. Zbl 1494.60058, MR 4440168, 10.1016/j.spa.2020.01.004
Reference: [7] Čoupek, P., Kříž, P., Maslowski, B.: Ergodicity of increments of the Rosenblatt process and some consequences.Czech. Math. J. 75 (2025), 327-343. Zbl 08063779, MR 4879023, 10.21136/CMJ.2024.0252-23
Reference: [8] Čoupek, P., Ondreját, M.: Besov-Orlicz path regularity of non-Gaussian processes.Potential Anal. 60 (2024), 307-339. Zbl 1551.60064, MR 4696040, 10.1007/s11118-022-10051-8
Reference: [9] Garino, V., Nourdin, I., Nualart, D., Salamat, M.: Limit theorems for integral functionals of Hermite-driven processes.Bernoulli 27 (2021), 1764-1788. Zbl 1491.60048, MR 4278795, 10.3150/20-BEJ1291
Reference: [10] Mordecki, E., Wschebor, M.: Approximation of the occupation measure of Lévy processes.C. R., Math., Acad. Sci. Paris 340 (2005), 605-610. Zbl 1065.60046, MR 2138712, 10.1016/j.crma.2005.03.005
Reference: [11] Mordecki, E., Wschebor, M.: Smoothing of paths and weak approximation of the occupation measure of Lévy processes.Publ. Mat. Urug. 11 (2006), 23-40. Zbl 1538.60069, MR 2245373
Reference: [12] Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus: From Stein's Method to Universality.Cambridge Tracts in Mathematics 192. Cambridge University Press, Cambridge (2012). Zbl 1266.60001, MR 2962301, 10.1017/CBO9781139084659
Reference: [13] Nualart, D.: The Malliavin Calculus and Related Topics.Probability and Its Applications. Springer, Berlin (2006). Zbl 1099.60003, MR 2200233, 10.1007/3-540-28329-3
Reference: [14] Rosenblatt, M.: Independence and dependence.Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. Vol. II: Contributions to Probability Theory University of California Press, Berkeley (1961), 431-443. Zbl 0105.11802, MR 0133863
Reference: [15] Taqqu, M. S.: The Rosenblatt process.Selected Works of Murray Rosenblatt Springer, New York (2011), 29-45. 10.1007/978-1-4419-8339-8_6
Reference: [16] Tudor, C. A.: Analysis of the Rosenblatt process.ESAIM, Probab. Stat. 12 (2008), 230-257. Zbl 1187.60028, MR 2374640, 10.1051/ps:2007037
Reference: [17] Tudor, C. A.: Analysis of Variations for Self-Similar Processes: A Stochastic Calculus Approach.Probability and Its Applications. Springer, Cham (2013). Zbl 1308.60004, MR 3112799, 10.1007/978-3-319-00936-0
Reference: [18] Tudor, C. A.: Non-Gaussian Selfsimilar Stochastic Processes.SpringerBriefs in Probability and Mathematical Statistics. Springer, Cham (2023). Zbl 07756369, MR 4647498, 10.1007/978-3-031-33772-7
Reference: [19] Tudor, C. A., Viens, F. G.: Variations and estimators for self-similarity parameters via Malliavin calculus.Ann. Probab. 37 (2009), 2093-2134. Zbl 1196.60036, MR 2573552, 10.1214/09-AOP459
Reference: [20] Wschebor, M.: Sur les accroissements du processus de Wiener.C. R. Acad. Sci., Paris, Sér. I 315 (1992), 1293-1296 French. Zbl 0770.60075, MR 1194538
Reference: [21] Wschebor, M.: Smoothing and occupation measures of stochastic processes.Ann. Fac. Sci. Toulouse, Math. (6) 15 (2006), 125-156. Zbl 1121.62072, MR 2225750, 10.5802/afst.1116
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo