Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
multiple stochastic integral; Wiener chaos; Rosenblatt process; oscillation of stochastic process
Summary:
Let $(Z ^{H}_{t}, t\geq 0)$ be the Rosenblatt process with Hurst index $H\in (\frac {1}{2},1 )$. We analyze the limit behavior of the oscillation of the Rosenblatt process given by $X^{H, \varepsilon }_{t} = \varepsilon ^{-H} (Z^{H}_{t+\varepsilon }- Z^{H}_{t})$ with $\varepsilon >0$ and $t\geq 0$. Based on the Wiener chaos expansion, we prove that the quantity $M_{Q} ( X ^{\varepsilon })= \int _{0}^{1} Q (X ^{\varepsilon }_{t}) {\rm d} t$ converges as $\varepsilon \to 0$, almost surely and in $ L^{q}(\Omega )$ for any $q\geq 1$, to $ {\bf E} Q(Z^{H}_{1})$ for any polynomial function $Q$ with $ {\bf E} Q(Z^{H}_{1})<\infty $. We also obtain a second order result, i.e., after a proper renormalization, the quantity $M_{Q} ( X ^{\varepsilon })-{\bf E} Q(Z^{H}_{1})$ converges as $\varepsilon \to 0$, almost surely and in $ L^{q}(\Omega )$ for any $q\geq 1$, to a Rosenblatt-distributed random variable.
References:
[1] Azaïs, J.-M., Wschebor, M.: Almost sure oscillation of certain random processes. Bernoulli 2 (1996), 257-270. DOI 10.2307/3318523 | MR 1416866 | Zbl 0885.60018
[2] Azaïs, J.-M., Wschebor, M.: Oscillation presque sûre de martingales continues. Séminaire Probabilités XXXI Lecture Notes in Mathematics 1655. Springer, Berlin (1997), 69-76 French. DOI 10.1007/BFb0119293 | MR 1478717 | Zbl 0882.60018
[3] Azaïs, J.-M., Wschebor, M.: Level Sets and Extrema of Random Processes and Fields. John Wiley & Sons, Hoboken (2009). DOI 10.1002/9780470434642 | MR 2478201 | Zbl 1168.60002
[4] Berzin-Joseph, C., León, J. R.: Weak convergence of the integrated number of level crossings to the local time for Wiener processes. C. R. Acad. Sci., Paris, Sér. I 319 (1994), 1311-1316. MR 1310678 | Zbl 0812.60069
[5] Berzin-Joseph, C., León, J. R., Ortega, J.: Increments and crossings for the Brownian bridge: Weak convergence. C. R. Acad. Sci., Paris, Sér. I, Math. 327 (1998), 587-592. DOI 10.1016/S0764-4442(98)89169-6 | MR 1650627 | Zbl 1002.60573
[6] Čoupek, P., Duncan, T. E., Pasik-Duncan, B.: A stochastic calculus for Rosenblatt processes. Stochastic Processes Appl. 150 (2022), 853-885. DOI 10.1016/j.spa.2020.01.004 | MR 4440168 | Zbl 1494.60058
[7] Čoupek, P., Kříž, P., Maslowski, B.: Ergodicity of increments of the Rosenblatt process and some consequences. Czech. Math. J. 75 (2025), 327-343. DOI 10.21136/CMJ.2024.0252-23 | MR 4879023 | Zbl 08063779
[8] Čoupek, P., Ondreját, M.: Besov-Orlicz path regularity of non-Gaussian processes. Potential Anal. 60 (2024), 307-339. DOI 10.1007/s11118-022-10051-8 | MR 4696040 | Zbl 1551.60064
[9] Garino, V., Nourdin, I., Nualart, D., Salamat, M.: Limit theorems for integral functionals of Hermite-driven processes. Bernoulli 27 (2021), 1764-1788. DOI 10.3150/20-BEJ1291 | MR 4278795 | Zbl 1491.60048
[10] Mordecki, E., Wschebor, M.: Approximation of the occupation measure of Lévy processes. C. R., Math., Acad. Sci. Paris 340 (2005), 605-610. DOI 10.1016/j.crma.2005.03.005 | MR 2138712 | Zbl 1065.60046
[11] Mordecki, E., Wschebor, M.: Smoothing of paths and weak approximation of the occupation measure of Lévy processes. Publ. Mat. Urug. 11 (2006), 23-40. MR 2245373 | Zbl 1538.60069
[12] Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus: From Stein's Method to Universality. Cambridge Tracts in Mathematics 192. Cambridge University Press, Cambridge (2012). DOI 10.1017/CBO9781139084659 | MR 2962301 | Zbl 1266.60001
[13] Nualart, D.: The Malliavin Calculus and Related Topics. Probability and Its Applications. Springer, Berlin (2006). DOI 10.1007/3-540-28329-3 | MR 2200233 | Zbl 1099.60003
[14] Rosenblatt, M.: Independence and dependence. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. Vol. II: Contributions to Probability Theory University of California Press, Berkeley (1961), 431-443. MR 0133863 | Zbl 0105.11802
[15] Taqqu, M. S.: The Rosenblatt process. Selected Works of Murray Rosenblatt Springer, New York (2011), 29-45. DOI 10.1007/978-1-4419-8339-8_6
[16] Tudor, C. A.: Analysis of the Rosenblatt process. ESAIM, Probab. Stat. 12 (2008), 230-257. DOI 10.1051/ps:2007037 | MR 2374640 | Zbl 1187.60028
[17] Tudor, C. A.: Analysis of Variations for Self-Similar Processes: A Stochastic Calculus Approach. Probability and Its Applications. Springer, Cham (2013). DOI 10.1007/978-3-319-00936-0 | MR 3112799 | Zbl 1308.60004
[18] Tudor, C. A.: Non-Gaussian Selfsimilar Stochastic Processes. SpringerBriefs in Probability and Mathematical Statistics. Springer, Cham (2023). DOI 10.1007/978-3-031-33772-7 | MR 4647498 | Zbl 07756369
[19] Tudor, C. A., Viens, F. G.: Variations and estimators for self-similarity parameters via Malliavin calculus. Ann. Probab. 37 (2009), 2093-2134. DOI 10.1214/09-AOP459 | MR 2573552 | Zbl 1196.60036
[20] Wschebor, M.: Sur les accroissements du processus de Wiener. C. R. Acad. Sci., Paris, Sér. I 315 (1992), 1293-1296 French. MR 1194538 | Zbl 0770.60075
[21] Wschebor, M.: Smoothing and occupation measures of stochastic processes. Ann. Fac. Sci. Toulouse, Math. (6) 15 (2006), 125-156. DOI 10.5802/afst.1116 | MR 2225750 | Zbl 1121.62072
Partner of
EuDML logo