[2] Fujie, K., Senba, T.:
Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), pp. 81–102.
MR 3426833
[3] Fujie, K., T., Senba:
Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity. Nonlinearity, 29 (2016), pp. 2417–2450.
DOI 10.1088/0951-7715/29/8/2417 |
MR 3538418
[4] Fujie, K., Senba, T.:
A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system. Preprint.
MR 3816648
[5] Fujie, K., Yokota, T.:
Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity. Appl. Math. Lett, 38 (2014), pp. 140–143.
DOI 10.1016/j.aml.2014.07.021 |
MR 3258217
[7] Mizoguchi, N., Winkler, M.: Is finite-time blow-up a generic phenomenon in the twodimensional Keller-Segel system?. Preprint.
[8] Mora, X.:
Semilinear parabolic problems define semiflows on $C^k$ spaces. Trans. Amer. Math.Soc, 278 (1983), pp. 21–55.
MR 0697059
[9] Nagai, T.:
Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5 (1995), pp. 581–601.
MR 1361006
[10] Nagai, T., Senba, T., Yoshida, K.:
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac., 40 (1997), pp. 411-433.
MR 1610709
[11] Nagai, T., Senba, T.:
Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis. Adv. Math. Sci. Appl, 8 (1998), pp. 145–156.
MR 1623326
[12] Quittner, P., Souplet, P.:
Superlinear parabolic problems. Birkhäuser advanced text Basler Lehrbücher. Birkhäuser, Berlin, 2007.
MR 2346798
[13] Stinner, C., Winkler, M.:
Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Analysis: Real World Applications, 12 (2011), pp. 3727–3740.
MR 2833007
[14] Winkler, M.:
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segelmodel. J. Differential Equations, 248 (2010), pp. 2889–2905.
DOI 10.1016/j.jde.2010.02.008 |
MR 2644137
[15] Winkler, W.:
Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci., 34 (2011), pp. 176–190.
DOI 10.1002/mma.1346 |
MR 2778870