Previous |  Up |  Next

Article

Title: Gaussian curvature based tangential redistribution of points on evolving surfaces (English)
Author: Medľa, Matej
Author: Mikula, Karol
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 255-264
.
Category: math
.
Summary: There exist two main methods for computing a surface evolution, level-set method and Lagrangian method. Redistribution of points is a crucial element in a Lagrangian approach. In this paper we present a point redistribution that compress quads in the areas with a high Gaussian curvature. Numerical method is presented for a mean curvature flow of a surface approximated by quads. (English)
Keyword: Surface evolution, point redistribution, finite volume method, mean curvature flow
MSC: 53C44
MSC: 65M08
MSC: 65M50
.
Date available: 2019-09-27T08:07:23Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703027
.
Reference: [1] Freitag, L. A.: On combining Laplacian and optimization-based mesh smoothing techniques., American Society of Mechanical Engineers, Applied Mechanics Division, AMD, (1999).
Reference: [2] Húska, M., Medľa, M., Mikula, K., Morigi, S.: Surface quadrangulation., in preparation.
Reference: [3] Liu, D., Xu, G.: Angle deficit approximation of Gaussian curvature and its convergence over quadrilateral meshes., In Computer-Aided Design, Volume 39, Issue 6, 2007, pp. 506-517, ISSN 0010-4485, https://doi.org/10.1016/j.cad.2007.01.007. 10.1016/j.cad.2007.01.007
Reference: [4] Mikula, K., Remešíková, M., Sarkoci, P., Ševčovič, D.: Manifold evolution with tangential redistribution of points., SIAM J. Scientific Computing, 36, No. 4 (2014), pp. A1384-A1414. MR 3226752, 10.1137/130927668
Reference: [5] Ševčovič, D., Yazaki, S.: Evolution of plane curves with a curvature adjusted tangential velocity., Japan J. Indust. Appl. Math., 28(3) (2011), 413-442. MR 2846183, 10.1007/s13160-011-0046-9
.

Files

Files Size Format View
Equadiff_14-2017-1_31.pdf 3.952Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo