Previous |  Up |  Next


wildfire identification; semantic segmentation; support vector machines; distributed training
This paper deals with wildfire identification in the Alaska regions as a semantic segmentation task using support vector machine classifiers. Instead of colour information represented by means of BGR channels, we proceed with a normalized reflectance over 152 days so that such time series is assigned to each pixel. We compare models associated with $\mathcal{l}1$-loss and $\mathcal{l}2$-loss functions and stopping criteria based on a projected gradient and duality gap in the presented benchmarks.
Partner of
EuDML logo