Previous |  Up |  Next

Article

Title: $L_p$- theory for a class of singular elliptic differential operators, II (English)
Author: Kretschmer, Hans
Author: Triebel, Hans
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 26
Issue: 3
Year: 1976
Pages: 438-447
Summary lang: Russian
.
Category: math
.
MSC: 35J30
MSC: 35P05
idZBL: Zbl 0343.35067
idMR: MR0427857
DOI: 10.21136/CMJ.1976.101417
.
Date available: 2008-06-09T14:19:40Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101417
.
Reference: [1] S. Agmon: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems.Comm. Pure Appl. Math. 15 (1962), 119-147. Zbl 0109.32701, MR 0147774, 10.1002/cpa.3160150203
Reference: [2] И. Ц. Гохберг M. Г. Крейи (I. С. Gochberg M. G. Krejn): Введение в теорию линейных несамосопряженных операторов в гильбертовом пространстве.Изд. „Наука", Москва 1965. (There exists an English translation of the book.)
Reference: [3] F. Riesz B. Sz.-Nagy: Vorlesungen über Funktionalanalysis.VEB Deutscher Verl. d. Wissenschaften Berlin 1968 (2. Aufl.). Zbl 0176.42401
Reference: [4] H. Triebel: Über die Verteilung der Approximationszahlen kompakter Operatoren in Sobolev-Besov-Räumen.Inventiones Math. 4 (1967), 275 - 293. Zbl 0165.14501, MR 0220055, 10.1007/BF01425385
Reference: [5] H. Triebel: Höhere Analysis.VEB Deutscher Verlag d. Wissenschaften. Berlin 1972. Zbl 0257.47001, MR 0360061
Reference: [6] H. Triebel: Interpolation theory for function spaces of Besov type defined in domains. II.Math. Nachrichten 58 (1973), 63-86. Zbl 0233.46049, MR 0361760, 10.1002/mana.19730580106
Reference: [7] H. Triebel: $L\sb{p}$-theory for a class of singular elliptic differential operators.Czech. Math. J. 23 (1973), 525-541. MR 0333435
.

Files

Files Size Format View
CzechMathJ_26-1976-3_10.pdf 1.286Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo