[1] K. A. Baker:
Finite equational bases for finite algebras in congruence-distributive equational classes. Advances in Math. 24 (1977), 207-243.
MR 0447074
[2] K. A. Baker G. McNulty, H. Werner:
The finitely based varieties of graph algebras. preprint.
MR 0911554
[4] S. Burris, H. P. Sankappanavar:
A Course in Universal Algebra. Graduate Texts in Mathematics v. 78, Springer Verlag, New York, 1981.
MR 0648287 |
Zbl 0478.08001
[5] G. Grätzer:
Universal Algebra. 2nd. ed., Springer-Verlag, New York, 1979.
MR 0538623
[8] E. Kiss:
A note on varieties of graph algebras. in the Proceedings of the Charleston Conference on Universal Algebra and Lattice Theory, S. Comer, ed., Lecture Notes in Mathematics # 1149, Springer-Verlag, New York, pp. 163-166.
MR 0823014 |
Zbl 0572.08009
[10] I. V. L'vov:
Varieties of associative rings I, II. Algebra and Logic 12, (1971), 150-167, 381-383.
MR 0389973
[14] R. McKenzie: Finite equational bases for congruence modular algebras. preprint.
[15] G. McNulty:
How to construct finite algebras which are not finitely based. in the Proceedings of the Charleston Conference on Universal Algebra and Lattice Theory, S. Comer, ed., Lecture Notes in Mathematics # 1149, Springer-Verlag, New York, 1985, pp. 167- 174.
MR 0823015 |
Zbl 0575.08005
[16] G. McNulty, C. Shallon:
Inherently nonfinitely based finite algebras, Universal Algebra and Lattice Theory. Lecture Notes in Mathematics vol. 1004, R. Freese and O. Garcia, eds., 206-231, Springer-Verlag, 1983.
DOI 10.1007/BFb0063439 |
MR 0716184
[17] V. L. Murskii:
The existence in three-valued logic of a closed class with finite basis not having a finite complete set of identities. Dokl. Akad. Nauk. SSSR 163 (1965), 815-818; English Translation Soviet Math. Dokl. 6 (1965), 1020-1024.
MR 0186539
[18] V. L. Murskii:
On the number of $k$-element algebras with one binary operation without a finite basis of identitis. Problemy Kibernet. 35 (1979), 5-27.
MR 0539884
[20] S. Oates-Williams:
Graphs and universal algebras, Combinatorial Mathematics VIII. Lecture Notes in Mathematics vol. 884, K. MacAvaney, ed., 351-354, Springer-Verlag, 1981.
DOI 10.1007/BFb0091831 |
MR 0641259
[23] R. Pöschel: Graph varieties. preprint.
[24] R. Pöschel:
Graph algebras and graph varieties. preprint.
MR 1387902
[25] R. Pöschel, W. Wessel: Classes of graphs which can be defined by equations in their graph algebras. preprint.
[26] C. Shallon: Nonfinitely Based Finite Algebras Derived from Lattices. Ph. D. dissertation, UCLA, 1979.