[1] V. I. Bogačev, S. A. Škarin: 
On differentiable and Lipschitz mappings between Banach spaces. (in Russian), Matem. Zametki 44 (1988), 567-583. 
MR 0980578[2] J. M. Borwein, D. Preiss: 
A smooth variational principle with applications to sub-differentiability and to differentiability of convex functions. Trans. Amer. Math. Soc. 303 (1987), 517-527. 
DOI 10.1090/S0002-9947-1987-0902782-7 | 
MR 0902782[3] N. Bourbaki: Eléments de Mathématique, Variétés différentielles et analytiques. Paris 1967, 1971.
[4] H. Cartan: 
Calcul différentiel, Formes différentielles. Paris 1967. 
MR 0223194[5] M. Fabian, N. V. Zhivkov: 
A characterization of Asplund spaces with the help of local $\epsilon$-supports of Ekeland and Lebourg. C. R. Acad. Bulgare Sci. 38 (1985), 671 - 674. 
MR 0805439 | 
Zbl 0577.46012[8] P. S. Kenderov: 
Monotone operations in Asplund spaces. C. R. Acad. Bulgare Sci. 30 (1977), 963-964. 
MR 0463981[11] R. R. Phelps: 
Convex functions, monotone operators and differentiability. Lect. Notes in Math. 1364, Springer-Verlag, 1989. 
MR 0984602 | 
Zbl 0658.46035[12] D. Preiss: 
Gateaux differentiable functions are somewhere Frechet differentiable. Rend. Circ. Mat. di Palermo, Ser. II, 33 (1984), 122-133. 
MR 0743214 | 
Zbl 0573.46024[13] R. T. Rockafellar: 
The theory of subgradients and its applications to problems of optimization. Heldermann, Berlin, 1981. 
MR 0623763 | 
Zbl 0462.90052[14] L. Veselý, L. Zajíček: 
Delta-convex mappings between Banach spaces and applications. Dissertationes Mathematicae 289, Warszawa 1989, 48 pp. 
MR 1016045[15] L. Zajíček: 
A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions. Proc. 11th Winter School, Suppl. Rend. Circ. Mat. di Palermo, Ser. II, nr. 3 (1984), 403-410. 
MR 0744405[16] L. Zajíček: 
Strict differentiability via differentiability. Acta Univ. Carolinae 28 (1987), 157-159. 
MR 0932752