Previous |  Up |  Next

Article

Title: Fréchet differentiability, strict differentiability and subdifferentiability (English)
Author: Zajíček, Luděk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 41
Issue: 3
Year: 1991
Pages: 471-489
.
Category: math
.
MSC: 26E15
MSC: 46G05
MSC: 49J50
MSC: 58C20
idZBL: Zbl 0760.46038
idMR: MR1117801
DOI: 10.21136/CMJ.1991.102482
.
Date available: 2008-06-09T15:41:04Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102482
.
Reference: [1] V. I. Bogačev, S. A. Škarin: On differentiable and Lipschitz mappings between Banach spaces.(in Russian), Matem. Zametki 44 (1988), 567-583. MR 0980578
Reference: [2] J. M. Borwein, D. Preiss: A smooth variational principle with applications to sub-differentiability and to differentiability of convex functions.Trans. Amer. Math. Soc. 303 (1987), 517-527. MR 0902782, 10.1090/S0002-9947-1987-0902782-7
Reference: [3] N. Bourbaki: Eléments de Mathématique, Variétés différentielles et analytiques.Paris 1967, 1971.
Reference: [4] H. Cartan: Calcul différentiel, Formes différentielles.Paris 1967. MR 0223194
Reference: [5] M. Fabian, N. V. Zhivkov: A characterization of Asplund spaces with the help of local $\epsilon$-supports of Ekeland and Lebourg.C. R. Acad. Bulgare Sci. 38 (1985), 671 - 674. Zbl 0577.46012, MR 0805439
Reference: [6] S. Fitzpatrick: Separably related sets and the Radon-Nikodým property.Illinois J. Math. 29 (1985), 229-247. Zbl 0546.46009, MR 0784521, 10.1215/ijm/1256045727
Reference: [7] J. R. Giles: On the characterization of Asplund spaces.J. Austral. Math. Soc. (Series A) 32 (1982), 134-144. MR 0643437, 10.1017/S1446788700024472
Reference: [8] P. S. Kenderov: Monotone operations in Asplund spaces.C. R. Acad. Bulgare Sci. 30 (1977), 963-964. MR 0463981
Reference: [9] K. Kuratowski: Topology, Vol. I.New York, 1966. Zbl 0158.40901, MR 0217751
Reference: [10] A. Nijenhuis: Strong derivatives and inverse mapping.Amer. Math. Monthly 81 (1974), 969-980. MR 0360958, 10.1080/00029890.1974.11993706
Reference: [11] R. R. Phelps: Convex functions, monotone operators and differentiability.Lect. Notes in Math. 1364, Springer-Verlag, 1989. Zbl 0658.46035, MR 0984602
Reference: [12] D. Preiss: Gateaux differentiable functions are somewhere Frechet differentiable.Rend. Circ. Mat. di Palermo, Ser. II, 33 (1984), 122-133. Zbl 0573.46024, MR 0743214
Reference: [13] R. T. Rockafellar: The theory of subgradients and its applications to problems of optimization.Heldermann, Berlin, 1981. Zbl 0462.90052, MR 0623763
Reference: [14] L. Veselý, L. Zajíček: Delta-convex mappings between Banach spaces and applications.Dissertationes Mathematicae 289, Warszawa 1989, 48 pp. MR 1016045
Reference: [15] L. Zajíček: A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions.Proc. 11th Winter School, Suppl. Rend. Circ. Mat. di Palermo, Ser. II, nr. 3 (1984), 403-410. MR 0744405
Reference: [16] L. Zajíček: Strict differentiability via differentiability.Acta Univ. Carolinae 28 (1987), 157-159. MR 0932752
.

Files

Files Size Format View
CzechMathJ_41-1991-3_12.pdf 2.848Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo