Article
Keywords:
quasilinear; method of Minty-Browder type; existence; uniqueness; weak $\omega$-periodic solution; vibrating processes; elasto-plastic solids; ferromagnetics; Ishlinskii hysteresis operator; finite speed of propagation; sharp estimates; hysteresis energy losses
Summary:
A version of the Minty-Browder method is used for proving the existence and uniqueness of a weak $\omega$-periodic solution to the equation $u_{tt}\rightarrow \text {div} F(\text {grad } u)= g$ in a bounded domain $\Omega \subset \bold R^N$ with the boundary condition $u=0$ on $\delta \Omega$, where $g$ is a given (generalized) $\omega$-periodic function and $F$ is the Ishlinskii hysteresis operator.
References:
[1] S. Fučík A. Kufner: Nonlinear differential equations. (Czech). SNTL, Praha, 1978.
[2] P. Krejčí:
Hysteresis and periodic solutions to semilinear and quasilinear wave equations. Math. Z. 193 (1986), 247-264.
DOI 10.1007/BF01174335 |
MR 0856153
[3] P. Krejčí:
On Ishlinskii model for non-perfectly elastic bodies. Apl. mat. 33 (1988), No. 2, 133-144.
MR 0940712
[4] A. Kufner O. John S. Fučík:
Function spaces. Academia, Praha, 1977.
MR 0482102
[5] J.-L. Lions:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris, 1969.
MR 0259693 |
Zbl 0189.40603
[6] О. В. Бесов, В П. Ильин С. М. Никольский:
Интегральные представления функций и теоремы вложения. Наука, Москва, 1975.
Zbl 1231.90252
[7] А. Ю. Ишлинский:
Некоторые применения статистики к описанию законов деформирования тел. Изв. АН СССР, OTH, 1944, Но 9, 583-590.
Zbl 0149.19102
[8] M. А. Красносельский А. В. Покровский:
Системы с гистерезисом. Наука, Москва, 1983.
Zbl 1229.47001