Previous |  Up |  Next

Article

Keywords:
Gaussian random vector; quadratic estimators; conditional mean value; quadratic regression; projection pursuit method
Summary:
The model of quadratic regression is studied by means of the projection pursuit method. This method leads to a decomposition of the matrix of quadratic regression, which can be used for an estimation of this matrix from the data observed.
References:
[1] J. H. Friedman W. Stuetzle: Projection pursuit regression. J. Amer. Stat. Assoc. 76 (1981) 817-823. DOI 10.1080/01621459.1981.10477729 | MR 0650892
[2] P. J. Huber: Projection pursuit. Ann. Statist. 13 (1985), 435-475. DOI 10.1214/aos/1176349519 | MR 0790553 | Zbl 0595.62059
[3] L. R. La Motte: Quadratic estimation of variance components. Biometrika 29 (1973), 311-330. MR 0329142
[4] C. R. Rao: Estimation of variance and covariance components - MINQUE theory. J. Mult. Analysis 1, 1971, 445-456. DOI 10.1016/0047-259X(71)90019-4 | MR 0301870 | Zbl 0223.62086
[5] J. Rozanov: Gaussian random processes. (Russian). Nauka, Moskva 1970. MR 0544843
[6] F. Štulajter: RKHS approach to nonlinear estimation of random variables. Trans. VIII-th Prague Conf. Volume B (1978), 239-246. MR 0536821
Partner of
EuDML logo