Previous |  Up |  Next

Article

References:
[1] A. ALEXIEWICZ: Analiza funkcjonalna. Warszawa, 1969.
[2] D. AMIR J. LINDENSTRAUSS: The structure of weaker compact sets in Banach spaces. Annals of Mathematics 88 (1968), 35-46. MR 0228983
[3] E. ASPLUND: Fréchet differentiability of convex functions. Acta Math. 121 (1968), 31-47. MR 0231199 | Zbl 0162.17501
[4] F. E. BROWDER: Problémes non lineaires. Les presses de l'Université de Montréal, 1966. Zbl 0153.17302
[5] E. ČECH: Point sets. Academia, Prague , 1969. MR 0256344
[6] M. FABIAN: On strong continuity of monotone mappings in reflexive Banach spaces. to appear in Acta Polytechnica 1977. MR 0467406
[7] K. JOHN V. ZIZLER: A renorming of dual spaces. Israel J. Math. 12 (1972), 331-336. MR 0344853
[8] K. JOHN V. ZIZLER: A note on renorming of dual spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 47-50. MR 0320711
[9] T. KATO: Demi-continuity, hemi-continuity, and monotonicity. Bull. Amer. Math. Soc. 70 (1964), 548-550. MR 0163198
[10] P. S. KENDEROV: The set-valued monotone mappings are almost everywhere singlevalued. Comptes rendus de l'Académie Bulgare des Sciences 27 (1974), 1173-1175. MR 0358447
[11] P. S. KENDEROV: A note on multivalued monotone mappings. Comptes rendus de l'Académic Bulgare des Sciences 28 (1975), 583-584. MR 0375007 | Zbl 0322.47032
[12] P. S. KENDEROV: Semicontinuity of set-valued monotone mappings. Fundamenta Mathematica 88 (1975), 61-69. MR 0380723
[13] N. KENMOCHI: Accretive mappings in Banach spaces. Hiroshima Math. Journal 2 (1972), 163-177. MR 0326503
[14] J. J. MOREAU: Fonctionnelles sous-differantiables. Comptes rendus Acad. Sci. Paris 257 (1963),4117-4119. MR 0158250
[15] I. NAMIOKA R. R. PHELPS: Banach spaces which are Asplund spaces. Duke Math. J. 42 (1975), 735-750. MR 0390721
[16] R. ROBERT: Points de continuité de multi-applications semi-continues supérieurement. Comptes rendus Acad. Sci. Paris 278 (1974), 413-415. MR 0348497 | Zbl 0274.54009
[17] R. ROBERT: Une généralisation aux opérateurs monotones des théorèmes de differentiabilité d'Asplund. Analyse convexe et see applications, Lecture Notes in Economics and Mathematical System 102, 168-179. MR 0482398 | Zbl 0301.47040
[18] R. T. ROCKAFELLAR: Local boundedness of nonlinear monotone operators. Michigan Math. J. 16 (1969), 397-407. MR 0253014 | Zbl 0175.45002
[19] R. T. ROCKAFELLAR: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33 (1970), 209-216. MR 0262827 | Zbl 0199.47101
[20] S. L. TROYANSKI: On locally uniformly convex and differentiate norms in certain non-separable Banach spaces. Studia Mathematica 37 (1971), 173-180. MR 0306873
[21] E. H. ZARANTONELLO: Dense Single-valuedness of Monotone Operators. Israel J. Math. 15 (1973), 158-166. MR 0324490 | Zbl 0274.47028
Partner of
EuDML logo