Previous |  Up |  Next

Article

Title: On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$ (English)
Author: Jakubec, Stanislav
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 30
Issue: 4
Year: 1994
Pages: 263-270
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to prove the following Theorem Theorem Let $K$ be an octic subfield of the field $Q(\zeta _p+\zeta _p^{-1})$ and let $p=n^4+16$ be prime. Then $p$ divides $h_K$ if and only if $p$ divides $B_j$ for some $j=\frac{p-1}{8}$, $3\frac{p-1}{8}$, $5\frac{p-1}{8}$, $7\frac{p-1}{8}$. (English)
MSC: 11B68
MSC: 11R18
MSC: 11R20
MSC: 11R29
idZBL: Zbl 0818.11042
idMR: MR1322570
.
Date available: 2008-06-06T21:27:00Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107512
.
Reference: [1] Buhler, J. P., Crandall, R. E. and Sompolski, R. W.: Irregular primes to one million.Math. Comp. 59 (1992), no. 200, 717-722. MR 1134717
Reference: [2] Darmon, H.: Note on a polynomial of Emma Lehmer.Math. Comp. 56 (1991), no. 44, 795-800. Zbl 0732.11056, MR 1068821
Reference: [3] Gras, M. N.: Sur les corps cubiques cycliques dont l’anneau des entiers est monogene.Ann. Sci. Univ. Besancon Math.(3), no. 6, 1-26. Zbl 0287.12010, MR 0352043
Reference: [4] Gras, M. N.: Table numerique du nombre de classes et de unites des extensions cycliques reelles de degre 4 de $Q$.Publ. Math. Besancon, fasc. 2 (1977/1978), 1-26, 1-53. MR 0526779
Reference: [5] Gras, M. N.: Familles d’unites dans les extensions cycliques reelles de degre 6 de $Q$.Publ. Math. Besancon (1984/1985-1985/1986). MR 0898667
Reference: [6] Gras, M. N.: Special units in real cyclic sextic fields.Math.Comp. 48 (1987), 341-355. Zbl 0617.12006, MR 0866107
Reference: [7] Jakubec, S.: The congruence for Gauss’s period.Journal of Number Theory 48 (1994), 36-45. MR 1284872
Reference: [8] Jakubec, S.: On the Vandiver’s conjecture.Abh. Math. Sem. Univ. Hamburg 64 (1994), 105-124. MR 1292720
Reference: [9] Lazarus, A. J.: Gaussian periods and units in certain cyclic fields.Proceedings of AMS 115, 961 - 968. Zbl 0760.11032, MR 1093600
Reference: [10] Lecxacheux, O.: Unites d’une famille de corps cycliques reeles de degre 6 lies a la coube modulaire $X_1(13)$.J. Number Theory 31 (1989), 54-63. MR 0978099
Reference: [11] Lehmer, E.: Connection between Gaussian periods and cyclic units.Math. Comp. 50 (1988), 535-541. Zbl 0652.12004, MR 0929551
Reference: [12] Metsankyla, T.: A class number congruence for cyclotomic fields and their subfields.Acta Arith. 23 (1973), 107-116. MR 0332720
Reference: [13] Moser, C.: Nombre de classes d’une extension cyclique reelle de $\mathbb{Q}$, de degre 4 ou 6 et de conducteur premier.Math. Nachr. 102 (1981), 45-52. MR 0642140
Reference: [14] Moser, C., Payan, J. J.: Majoration du nombre de classes d’un corps cubique cyclique de conducteur premier.J.Math. Soc. Japan 33 (1981), 701-706. MR 0630633
Reference: [15] Schoof, R., Washington, L. C.: Quintic polynomials and real cyclotomic fields with large class numbers.Math. Comp. 50 (1988), 543-556. MR 0929552
Reference: [16] Shanks, D.: The simplest cubic fields.Math. Comp. 28 (1974), 1137-1152. Zbl 0307.12005, MR 0352049
Reference: [17] Shen, Y. Y.: Unit groups and class numbers of real cyclic fields.TAMS 326 (1991), 179-209. MR 1031243
Reference: [18] Washington, L. C.: Introduction to Cyclotomic Fields.Springer-Verlag 83. Zbl 0966.11047, MR 1421575
.

Files

Files Size Format View
ArchMathRetro_030-1994-4_3.pdf 232.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo