Previous |  Up |  Next

Article

Title: On the limit cycle of the Liénard equation (English)
Author: Odani, Kenzi
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 1
Year: 2000
Pages: 25-31
Summary lang: English
.
Category: math
.
Summary: In the paper, we give an existence theorem of periodic solution for Liénard equation $\dot{x}=y-F(x)$, $\dot{y}=-g(x)$. As a result, we estimate the amplitude $\rho (\mu )$ (maximal $x$-value) of the limit cycle of the van der Pol equation $\dot{x}=y-\mu (x^3/3-x)$, $\dot{y}=-x$ from above by $\rho (\mu )<2.3439$ for every $\mu \ne 0$. The result is an improvement of the author’s previous estimation $\rho (\mu )<2.5425$. (English)
Keyword: van der Pol equation
Keyword: limit cycle
Keyword: amplitude
MSC: 34C05
idZBL: Zbl 1048.34067
idMR: MR1751611
.
Date available: 2008-06-06T22:25:05Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107715
.
Reference: [1] Alsholm P.: Existence of limit cycles for generalized Liénard equation.J. Math. Anal. Appl. 171 (1992), 242–255. MR 1192504
Reference: [2] Cartwright M. L.: Van der Pol’s equation for relaxation oscillation.In: Contributions to the Theory of Non-linear Oscillations II, S. Lefschetz, ed., Ann. of Math. Studies, vol. 29, Princeton Univ. Press, 1952, pp. 3–18. MR 0052617
Reference: [3] Giacomini H., Neukirch S.: On the number of limit cycles of Liénard equation.Physical Review E56 (1997), 3809-3813. MR 1476640
Reference: [4] van Horssen W. T.: A perturbation method based on integrating factors.SIAM J. Appl. Math. 59 (1999), 1427-1443. Zbl 0926.34043, MR 1692651
Reference: [5] Lefschetz S.: Differential Equations: Geometric Theory.2nd Ed., Interscience, 1963; reprint, Dover, New York, 1977. Zbl 0107.07101, MR 0153903
Reference: [6] Odani K.: The limit cycle of the van der Pol equation is not algebraic.J. Differential Equations 115 (1995), 146–152. Zbl 0816.34023, MR 1308609
Reference: [7] Odani K.: Existence of exactly $N$ periodic solutions for Liénard systems.Funkcialaj Ekvacioj 39 (1996), 217–234. Zbl 0864.34032, MR 1418722
Reference: [8] Odani K.: On the limit cycle of the van der Pol equation.In: Equadiff9 CD-ROM: Papers, Z. Došlá, J. Kuben, J. Vosmanský, eds., Masaryk Univ., Czech, 1998, pp. 229-235.
Reference: [9] Ye Y.-Q., al.: Theory of Limit Cycles.Transl. of Math. Monographs, vol. 66, Amer. Math. Soc., 1986. (Eng. Transl.) Zbl 0588.34022, MR 0854278
Reference: [10] Zhang Z.-F., al.: Qualitative Theory of Differential Equations.Transl. of Math. Monographs, vol. 102, Amer. Math. Soc., 1992. (Eng. Transl.) Zbl 0779.34001, MR 1175631
.

Files

Files Size Format View
ArchMathRetro_036-2000-1_4.pdf 307.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo