Previous |  Up |  Next

Article

Title: Global existence and stability of some semilinear problems (English)
Author: Kirane, M.
Author: Tatar, N.-E.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 1
Year: 2000
Pages: 33-44
Summary lang: English
.
Category: math
.
Summary: We prove global existence and stability results for a semilinear parabolic equation, a semilinear functional equation and a semilinear integral equation using an inequality which may be viewed as a nonlinear singular version of the well known Gronwall and Bihari inequalities. (English)
Keyword: semilinear parabolic equation
Keyword: functional differential equation
Keyword: integrodifferential equation
Keyword: integral equation fractional evolution equation
Keyword: global existence
Keyword: stability
Keyword: variation of parameters
MSC: 34D05
MSC: 34G20
MSC: 34K05
MSC: 34K20
MSC: 35B35
MSC: 35K55
idZBL: Zbl 1048.34102
idMR: MR1751612
.
Date available: 2008-06-06T22:25:08Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107716
.
Reference: [1] G. Butler, T. Rogers: A generalization of a lemma of Bihari and applications to pointwise estimates for integral equations.J. Math. Anal. and Appl. 33 No 1 (1971), 77–81. Zbl 0209.42503, MR 0270089
Reference: [2] G. DaPrato, M. Iannelli: Regularity of solutions of a class of linear integrodifferential equations in Banach spaces.J. Integral Equations Appl. 8 (1985), 27–40. MR 0771750
Reference: [3] W. E. Fitzgibbon: Semilinear functional differential equations in Banach space.J. Diff. Eq. 29 (1978), 1–14. Zbl 0392.34041, MR 0492663
Reference: [4] A. Friedman: Partial Differential Equations.Holt, Rinehart and Winston, New York, 1969. Zbl 0224.35002, MR 0445088
Reference: [5] Y. Fujita: Integrodifferential equation which interpolates the heat equation and the wave equation.Osaka J. Math. 27 (1990), 309–321. Zbl 0796.45010, MR 1066629
Reference: [6] H. Hattori, J. H. Lightbourne: Global existence and blow up for a semilinear integral equation.J. Integral Equations Appl. V2, No4 (1990), 529–546. MR 1094482
Reference: [7] D. Henry: Geometric theory of semilinear parabolic equations.Springer-Verlag, Berlin, Heidelberg, New York, 1981. Zbl 0456.35001, MR 0610244
Reference: [8] H. Hoshino: On the convergence properties of global solutions for some reaction-diffusion systems under Neumann boundary conditions.Diff. and Int. Eq. V9 No4 (1996), 761–778. Zbl 0852.35023, MR 1401436
Reference: [9] M. Kirane, N. Tatar: Asymptotic stability and blow up for a fractional evolution equation.submitted.
Reference: [10] M. Medved’: A new approach to an analysis of Henry type integral inequalities and their Bihari type versions.J. Math. Anal. and Appl. 214 (1997), 349–366. Zbl 0893.26006, MR 1475574
Reference: [11] M. Medved’: Singular integral inequalities and stability of semilinear parabolic equations.Archivum Mathematicum (Brno) Tomus 24 (1998), 183–190. Zbl 0915.34057, MR 1629697
Reference: [12] M. W. Michalski: Derivatives of noninteger order and their applications.”Dissertationes Mathematicae”, Polska Akademia Nauk, Instytut Matematyczny, Warszawa 1993. Zbl 0880.26007, MR 1247113
Reference: [13] M. Miklavčič: Stability for semilinear equations with noninvertible linear operator.Pacific J. Math. 1, 118 (1985), 199–214. MR 0783024
Reference: [14] S. M. Rankin: Existence and asymptotic behavior of a functional differential equation in a Banach space.J. Math. Anal. Appl. 88 (1982), 531–542. MR 0667076
Reference: [15] R. Redlinger: On the asymptotic behavior of a semilinear functional differential equation in Banach space.J. Math. Anal. Appl. 112 (1985), 371–377. Zbl 0598.34053, MR 0813604
Reference: [16] C. Travis, G. Webb: Existence and stability for partial functional differential equations.Trans. Amer. Math. Soc. 200 (1974), 395–418. Zbl 0299.35085, MR 0382808
Reference: [17] C. Travis, G. Webb: Existence, stability and compacteness in the $\alpha $-norm for partial functional differential equations.Trans. Amer. Math. Soc. 240 (1978), 129–143. MR 0499583
.

Files

Files Size Format View
ArchMathRetro_036-2000-1_5.pdf 350.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo