Previous |  Up |  Next

Article

Title: On connections between hypergraphs and algebras (English)
Author: Pióro, Konrad
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 1
Year: 2000
Pages: 45-60
Summary lang: English
.
Category: math
.
Summary: The aim of the present paper is to translate some algebraic concepts to hypergraphs. Thus we obtain a new language, very useful in the investigation of subalgebra lattices of partial, and also total, algebras. In this paper we solve three such problems on subalgebra lattices, other will be solved in [[Pio4]]. First, we show that for two arbitrary partial algebras, if their directed hypergraphs are isomorphic, then their weak, relative and strong subalgebra lattices are isomorphic. Secondly, we prove that two partial algebras have isomorphic weak subalgebra lattices iff their hypergraphs are isomorphic. Thirdly, for an arbitrary lattice $\mathbf {L}$ and a partial algebra $\mathbf {A}$ we describe (necessary and sufficient conditions) when the weak subalgebra lattice of $\mathbf {A}$ is isomorphic to $\mathbf {L}$. (English)
Keyword: hypergraph
Keyword: subalgebras (relative
Keyword: strong
Keyword: weak)
Keyword: subalgebra lattices
Keyword: partial algebra
MSC: 05C65
MSC: 05C90
MSC: 08A30
MSC: 08A55
idZBL: Zbl 1045.05070
idMR: MR1751613
.
Date available: 2008-06-06T22:25:11Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107717
.
Reference: [1] Bartol W.: Weak subalgebra lattices.Comment. Math. Univ. Carolinae 31 (1990), 405–410. Zbl 0711.08007, MR 1078473
Reference: [2] Bartol W.: Weak subalgebra lattices of monounary partial algebras.Comment. Math. Univ. Carolinae 31 (1990), 411–414. Zbl 0711.08007, MR 1078474
Reference: [3] Bartol W., Rosselló F., Rudak L.: Lectures on Algebras, Equations and Partiality.Technical report B–006, Univ. Illes Balears, Dept. Ciencies Mat. Inf, ed. Rosselló F., 1992.
Reference: [4] Berge C.: Graphs and Hypergraphs.North-Holland, Amsterdam 1973. Zbl 0254.05101, MR 0357172
Reference: [5] Birkhoff G., Frink O.: Representation of lattices by sets.Trans. AMS 64 (1948), 299–316. MR 0027263
Reference: [6] Burmeister P.: A Model Theoretic Oriented Approach to Partial Algebras.Math. Research Band 32, Akademie Verlag, Berlin, 1986. Zbl 0598.08004, MR 0854861
Reference: [7] Evans T., Ganter B.: Varieties with modular subalgebra lattices.Bull. Austr. Math. Soc. 28 (1983), 247–254. Zbl 0545.08010, MR 0729011
Reference: [8] Grätzer G.: Universal Algebra.second edition, Springer-Verlag, New York 1979. MR 0538623
Reference: [9] Grätzer G.: General Lattice Theory.Akademie-Verlag, Berlin 1978. MR 0504338
Reference: [10] Grzeszczuk P., Puczyłowski E. R.: On Goldie and dual Goldie dimensions.J. Pure Appl. Algebra 31(1984) 47–54. Zbl 0528.16010, MR 0738204
Reference: [11] Grzeszczuk P., Puczyłowski E. R.: On infinite Goldie dimension of modular lattices and modules.J. Pure Appl. Algebra 35(1985) 151–155. Zbl 0562.16014, MR 0775467
Reference: [12] Jónsson B.: Topics in Universal Algebra.Lecture Notes in Mathemathics 250, Springer-Verlag, 1972. MR 0345895
Reference: [13] Kiss E. W., Valeriote M. A.: Abelian algebras and the Hamiltonian property.J. Pure Appl. Algebra 87 (1993), 37–49. Zbl 0779.08004, MR 1222175
Reference: [14] Lukács E., Pálfy P. P.: Modularity of the subgroup lattice of a direct square.Arch. Math. 46 (1986), 18–19. Zbl 0998.20500, MR 0829806
Reference: [15] Pálfy P. P.: Modular subalgebra lattices.Alg. Univ. 27 (1990), 220–229. MR 1037863
Reference: [16] Pióro K.: On some non–obvious connections between graphs and unary partial algebras.- to appear in Czechoslovak Math. J. Zbl 1046.08002, MR 1761388
Reference: [17] Pióro K.: On the subalgebra lattice of unary algebras.Acta Math. Hungar. 84(1–2) (1999), 27–45. Zbl 0988.08004, MR 1696550
Reference: [18] Pióro K.: On a strong property of the weak subalgebra lattice.Alg Univ. 40(4) (1998), 477–495. MR 1681837
Reference: [19] Pióro K.: On some properties of the weak subalgebra lattice of a partial algebra of a fixed type.- in preparation.
Reference: [20] Sachs D.: The lattice of subalgebras of a Boolean algebra.Canad. J. Math. 14 (1962), 451–460. MR 0137666
Reference: [21] Shapiro J.: Finite equational bases for subalgebra distributive varieties.Alg. Univ. 24 (1987), 36–40. MR 0921528
Reference: [22] Shapiro J.: Finite algebras with abelian properties.Alg. Univ. 25 (1988), 334–364. MR 0969156
.

Files

Files Size Format View
ArchMathRetro_036-2000-1_6.pdf 413.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo