Previous |  Up |  Next

Article

Title: New aspects on CR-structures of codimension 2 on hypersurfaces of Sasakian manifolds (English)
Author: Munteanu, Marian-Ioan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 1
Year: 2006
Pages: 69-84
Summary lang: English
.
Category: math
.
Summary: We introduce a torsion free linear connection on a hypersurface in a Sasakian manifold on which we have defined in natural way a $CR$-structure of $CR$-codimension 2. We study the curvature properties of this connection and we give some interesting examples. (English)
Keyword: $CR-$structures
Keyword: almost contact structures
Keyword: $f$-structure with complemented frames
MSC: 53C25
MSC: 53C40
idZBL: Zbl 1164.53355
idMR: MR2227114
.
Date available: 2008-06-06T22:47:24Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107983
.
Reference: [1] Blair D. E.: Contact manifolds in Riemannian Geometry.Lecture Notes in Math. 509, Springer-Verlag, 1976. Zbl 0319.53026, MR 0467588
Reference: [2] Blair D. E.: Riemannian geometry of contact and symplectic manifolds.Progr. Math. 203, Birkhäuser, 2001. Zbl 1011.53001, MR 1874240
Reference: [3] Goldberg S. I., Yano K.: On normal globally $f$-manifold.Tôhoku Math. J. 22 (1970), 362–370. MR 0305295
Reference: [4] Lotta A., Pastore A. M.: The Tanaka-Webster connection for almost $S$-manifolds and Cartan geometry.Arch. Math. (Brno) 40 (2004), 47–61. MR 2054872
Reference: [5] Matzeu P., Oproiu V.: The Bochner type curvature tensor of pseudoconvex $CR$ structures.SUT J. Math. 31, 1 (1995), 1–16. MR 1342761
Reference: [6] Matzeu P., Oproiu V.: The Bochner type curvature tensor of pseudo-convex CR structures on real hypersurfaces in complex space forms.J. Geom. 63 (1998), 134–146. Zbl 0916.53013, MR 1651570
Reference: [7] Yano K., Kon M.: CR-submanifolds of Kählerian and Sasakian manifolds.Progr. Math. 30 (1983) Birkhäuser, Boston, Basel, Stuttgart. Zbl 0496.53037, MR 0688816
.

Files

Files Size Format View
ArchMathRetro_042-2006-1_8.pdf 261.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo