[1] Borceux F.: 
When is $\Omega $ a cogenerator in a topos?. Cahiers Topol. Géom. Diff. 16 (1975), 3–15.  
MR 0382393 | 
Zbl 0311.18006[2] Borceux F.: 
Handbook of Categorical Algebra 3: Categories of Sheaves. Encyclopaedia Math. Appl. 52 (1994).  
MR 1315049 | 
Zbl 0911.18001[3] Borceux F.: 
A survey of semi-abelian categories. In: Galois theory, Hopf Algebras, and Semi-abelian Categories, Fields Inst. Commun. 43 (2004), 27–60.  
MR 2075580 | 
Zbl 1067.18010[4] Borceux F., Bourn D.: 
Mal’cev, Protomodular, Homological and Semi-abelian Categories. Math. Appl. 566 (2004).  
MR 2044291 | 
Zbl 1061.18001[5] Borceux F., Bourn D.: 
Split extension classifier and centrality. to appear in the Proceedings of the Streetfest 2005.  
MR 2342823 | 
Zbl 1133.18002[6] Borceux F., Janelidze G., Kelly G. M.: 
Internal object actions. Comment. Math. Univ. Carolin. 46 (2005), 235–255.  
MR 2176890 | 
Zbl 1121.18004[7] Borceux F., Janelidze G., Kelly G. M.: 
On the representability of actions in a semi-abelian category. Theory Appl. Categ. 14 (2005), 244–286.  
MR 2182676 | 
Zbl 1103.18006[8] Bourn D.: 
Normal functors and strong protomodularity. Theory Appl. Categ. 7 (2000), 206–218.  
MR 1766393 | 
Zbl 0947.18004[9] Bourn D.: 
A categorical genealogy for the congruence distributive property. Theory Appl. Categ. 8 (2001), 391–407.  
MR 1847038 | 
Zbl 0978.18005[10] Bourn D.: 
Protomodular aspects of the dual of a topos. Adv. Math. 187 (2004), 240–255.  
MR 2074178[11] Bourn D., Janelidze G.: 
Protomodularity, descent and semi-direct products. Theory Appl. Categ. 4 (1998), 37–46.  
MR 1615341[12] Janelidze G., Márki L., Tholen W.: 
Semi-abelian categories. J. Pure Appl. Alg. 168 (2002), 367–386.  
MR 1887164 | 
Zbl 0993.18008[14] Johnstone P. T.: 
Sketches of an Elephant: a Topos Theory Compendium. volumes 1–2, Oxford Logic Guides 43–44 (2002).  
MR 1953060 | 
Zbl 1071.18002[15] Mac Lane S.: 
Categories for the Working Mathematician. Graduate Texts in Math. No. 5 (1971; revised edition 1998).   
Zbl 0232.18001