Previous |  Up |  Next

Article

Title: A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders (English)
Author: Darafsheh, Mohammad Reza
Author: Farjami, Yaghoub
Author: Sadrudini, Abdollah
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 1
Year: 2007
Pages: 31-37
Summary lang: English
.
Category: math
.
Summary: Let $\omega (G)$ denote the set of element orders of a finite group $G$. If $H$ is a finite non-abelian simple group and $\omega (H)=\omega (G)$ implies $G$ contains a unique non-abelian composition factor isomorphic to $H$, then $G$ is called quasirecognizable by the set of its element orders. In this paper we will prove that the group $PSL_{4}(5)$ is quasirecognizable. (English)
Keyword: projective special linear group
Keyword: element order
MSC: 20D06
MSC: 20D60
idZBL: Zbl 1156.20013
idMR: MR2310122
.
Date available: 2008-06-06T22:50:24Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108047
.
Reference: [1] Aleeva M. R.: On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group.Math. Notes 73 3-4 (2003), 299–313. Zbl 1065.20025, MR 1992593
Reference: [2] Brandl R., Shi W. J.: The characterization of $PSL(2,q)$ by its element orders.J. Algebra, 163 (1) (1994), 109–114. MR 1257307
Reference: [3] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A.: Atlas of Finite Groups.Clarendon Press, Oxford, 1985. Zbl 0568.20001, MR 0827219
Reference: [4] Darafsheh M. R., Karamzadeh N. S.: A characterization of groups $PSL(3,q)$ by their element orders for certain $q$.J. Appl. Math. Comput. (old KJCAM) 9 (2) (2002), 409–421. MR 1895684
Reference: [5] Darafsheh M. R.: Some conjugacy classes in groups associated with the general linear groups.Algebras Groups Geom. 15 (1998), 183–199. Zbl 0995.20027, MR 1676998
Reference: [6] Darafsheh M. R., Farjami Y.: Calculating the set of orders of elements in the finite linear groups.submitted. Zbl 1154.20040
Reference: [7] Gorenstein D.: Finite groups.Harper and Row, New York, 1968. Zbl 0185.05701, MR 0231903
Reference: [8] Higman G.: Finite groups in which every element has prime power order.J. London Math. Soc. 32 (1957), 335–342. Zbl 0079.03204, MR 0089205
Reference: [9] Kleidman P., Liebeck M.: The subgroup structure of finite classical groups.Cambridge University Press, 1990. MR 1057341
Reference: [10] Kondratjev A. S.: On prime graph components of simple groups.Math. Sb. 180 (6) (1989), 787–797.
Reference: [11] Lipschutz S., Shi W. J.: Finite groups whose element orders do not exceed twenty.Progr. Natur. Sci. 10 (1) (2000), 11–21. MR 1765567
Reference: [12] Mazurov V. D., Xu M. C., Cao H. P.: Recognition of finite simple groups $L_{3}(2^{m})$ and $U_{3}(2^{m})$ by their element orders.Algebra Logika 39 (5) (2000), 567–585. MR 1805756
Reference: [13] Mazurov V. D.: Characterization of finite groups by sets of orders of their elements.Algebra Logika 36 (1) (1997), 37–53. MR 1454690
Reference: [14] Passman D. S.: Permutation groups.W. A. Bengamin, New York, 1968. Zbl 0179.04405, MR 0237627
Reference: [15] Shi W. J.: A characteristic property of $\mathbb{A}_{5}$.J. Southwest-China Teachers Univ. (B) 3 (1986), 11–14. MR 0915854
Reference: [16] Shi W. J.: A characteristic property of $PSL_{2}(7)$.J. Austral. Math. Soc. (A) 36 (3) (1984), 354–356. MR 0733907
Reference: [17] Shi W. J.: A characterization of some projective special linear groups.J. Southwest-China Teachers Univ. (B) 2 (1985), 2–10. Zbl 0597.20007, MR 0843760
Reference: [18] Shi W. J.: A characteristic property of $J_{1}$ and $PSL_{2}(2^{n})$.Adv. Math. (in Chinese) 16 (4) (1987), 397–401.
Reference: [19] Shi W., Bi J.: A characteristic property for each finite projective special linear group.Lecture Notes in Math. 1456 (1990), 171–180. Zbl 0718.20009, MR 1092230
Reference: [20] Willams J. S.: Prime graph components of finite groups.J. Algebra 69 (2) (1981), 487–513. MR 0617092
.

Files

Files Size Format View
ArchMathRetro_043-2007-1_3.pdf 221.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo