[1] Bloom T., Graham I.: 
A geometric characterization of points of type $m$ on real submanifolds of $C^{n}$. J. Differential Geometry 12 (1977), no. 2, 171–182.  
MR 0492369[2] Bloom T.: 
On the contact between complex manifolds and real hyp in $C^{3}$. Trans. Amer. Math. Soc. 263 (1981), no. 2, 515–529.  
MR 0594423[3] Boas H. P., Straube E. J., Yu J. Y.: 
Boundary limits of the Bergman kernel and metric. Michigan Math. J. 42 (1995), no. 3, 449–461.  
MR 1357618 | 
Zbl 0853.32028[5] D’Angelo J.: 
Orders od contact, real hypersurfaces and applications. Ann. Math. 115 (1982), 615–637.  
MR 0657241[6] Diedrich K., Herbort G.: 
Pseudoconvex domains of semiregular type. in Contributions to Complex Analysis and Analytic geometry (1994), 127–161.  
MR 1319347[7] Diedrich K., Herbort G.: An alternative proof of a theorem by Boas-Straube-Yu. in Complex Analysis and Geometry, Trento 1995, Pitman Research Notes Math. Ser. 
[8] Fornaess J. E., Stensones B.: 
Lectures on Counterexamples in Several Complex Variables. Princeton Univ. Press 1987.  
MR 0895821[9] Isaev A., Krantz S. G.: 
Domains with non-compact automorphism groups: a survey. Adv. Math. 146 (1999), 1–38.  
MR 1706680[10] Kohn J. J.: 
Boundary behaviour of $\bar{\partial }$ on weakly pseudoconvex manifolds of dimension two. J. Differential Geom. 6 (1972), 523–542.  
MR 0322365[11] Kolář M.: 
Convexifiability and supporting functions in ${\mathbb{C}}^2$. Math. Res. Lett. 2 (1995), 505–513.  
MR 1355711[12] Kolář M.: 
Generalized models and local invariants of Kohn Nirenberg domains. to appear in Math. Z.  
MR 2390081 | 
Zbl 1137.32014[13] Kolář M.: 
On local convexifiability of type four domains in ${\mathbb{C}}^2$. Differential Geometry and Applications, Proceeding of Satellite Conference of ICM in Berlin 1999, 361–371.  
MR 1708924[14] Kolář M.: 
Necessary conditions for local convexifiability of pseudoconvex domains in ${\mathbb{C}}^2$. Rend. Circ. Mat. Palermo 69 (2002), 109–116.  
MR 1972429[15] Kolář M.: Normal forms for hypersurfaces of finite type in $ \mathbb{C}^2$. Math. Res. Lett. 12 (2005), 523–542. 
[16] Nikolov N.: 
Biholomorphy of the model domains at a semiregular boundary point. C.R. Acad. Bulgare Sci. 55 (2002), no. 5, 5–8.  
MR 1938822 | 
Zbl 1010.32018[17] Yu J.: 
Peak functions on weakly pseudoconvex domains. Indiana Univ. Math. J. 43 (1994), no. 4, 1271–1295.   
MR 1322619 | 
Zbl 0828.32003