Previous |  Up |  Next

Article

Title: Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions (English)
Author: Belarbi, Abdelkader
Author: Benchohra, Mouffak
Author: Ouahab, Abdelghani
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 1
Year: 2008
Pages: 1-7
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate the existence of multiple positive solutions for nonlinear boundary value problems with integral boundary conditions. We shall rely on the Leggett-Williams fixed point theorem. (English)
Keyword: multiple solutions
Keyword: Leggett-Williams fixed point theorem
Keyword: nonlinear boundary value problem
Keyword: integral boundary conditions
MSC: 34B10
MSC: 34B15
MSC: 34B18
MSC: 34B27
MSC: 47N20
idZBL: Zbl 1212.34051
idMR: MR2431225
.
Date available: 2008-06-06T22:52:23Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/108090
.
Reference: [1] Agarwal, R. P., O’Regan, D.: Existence of three solutions to integral and discrete equations via the Leggett-Williams fixed point theorem.Rocky Mountain J. Math. 31 (2001), 23–35. Zbl 0979.45003, MR 1821365, 10.1216/rmjm/1008959665
Reference: [2] Agarwal, R. P., O’Regan, D., Wong, P. J. Y.: Positive Solutions of Differential, Difference and Integral Equations.Kluwer Academic Publishers, Dordrecht, 1999. MR 1680024
Reference: [3] Ahmad, B, Khan, R. A., Sivasundaram, S.: Generalized quasilinearization method for a first order differential equation with integral boundary condition.Dynam. Contin. Discrete Impuls. Systems, Ser. A Math. Anal. 12 (2005), 289–296. Zbl 1084.34007, MR 2170414
Reference: [4] Anderson, D., Avery, R., Peterson, A.: Three positive solutions to a discrete focal boundary value problem. Positive solutions of nonlinear problems.J. Comput. Appl. Math. 88 (1998), 103–118. MR 1609058, 10.1016/S0377-0427(97)00201-X
Reference: [5] Brykalov, S. A.: A second order nonlinear problem with two-point and integral boundary conditions.Georgian Math. J. 1 (1994), 243–249. Zbl 0807.34021, 10.1007/BF02254673
Reference: [6] Denche, M., Marhoune, A. L.: High-order mixed-type differential equations with weighted integral boundary conditions.Electron. J. Differential Equations 60 (2000), 1–10. Zbl 0967.35101, MR 1787207
Reference: [7] Gallardo, J. M.: Second-order differential operators with integral boundary conditions and generation of analytic semigroups.Rocky Mountain J. Math. 30 (2000), 265–1291. Zbl 0984.34014, MR 1810167
Reference: [8] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones.Academic Press, San Diego, 1988. Zbl 0661.47045, MR 0959889
Reference: [9] Karakostas, G. L., Tsamatos, P. Ch.: Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems.Electron. J. Differential Equations 30 (2002), 17. Zbl 0998.45004, MR 1907706
Reference: [10] Khan, R. A.: The generalized method of quasilinearization and nonlinear boundary value problems with integral boundary conditions.Electron. J. Qual. Theory Differ. Equ. 19 (2003), 15. Zbl 1055.34033, MR 2039793
Reference: [11] Krall, A. M.: The adjoint of a differential operator with integral boundary condition.Proc. Amer. Math. Soc. 16 (1965), 738–742. MR 0181794, 10.1090/S0002-9939-1965-0181794-9
Reference: [12] Leggett, R. W., Williams, L.R.: Multiple positive fixed points of nonlinear operators on ordered Banach spaces.Indiana Univ. Math. J. 28 (1979), 673–688. Zbl 0421.47033, MR 0542951, 10.1512/iumj.1979.28.28046
Reference: [13] Lomtatidze, A., Malaguti, L.: On a nonlocal boundary value problem for second order nonlinear singular differential equations.Georgian Math. J. 7 (2000), 133–154. Zbl 0967.34011, MR 1768050
.

Files

Files Size Format View
ArchMathRetro_044-2008-1_1.pdf 400.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo